# ACTIVE

CATEGORY Type: IC ENGINE SPARK-STANDBY

BACT Category: Minor Source BACT

BACT Determination Number: 284 BACT Determination Date: 8/11/2021

**Equipment Information** 

**Permit Number:** N/A -- Generic BACT Determination

Equipment Description: IC ENGINE SPARK-STANDBY

Unit Size/Rating/Capacity: < 500 BHP

**Equipment Location:** 

# **BACT Determination Information**

**EXPIRED** 

| District | Contact: Joe Ca            | arle Phone No.: (916) 874 - 4838 email: jcarle@airquality.org                                                    |  |  |  |  |
|----------|----------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| ROCs     | Standard:                  | See Description                                                                                                  |  |  |  |  |
| ROOS     | Technology<br>Description: | Rich Burn: 60 ppmvd @ 15% O2 as methane (0.29 g/bhp-hr); Lean Burn: 206 ppmvd @ 15% O2 as methane (1.0 g/bhp-hr) |  |  |  |  |
|          | Basis:                     | Achieved in Practice                                                                                             |  |  |  |  |
| NOx      | Standard:                  | See Description                                                                                                  |  |  |  |  |
|          | Technology<br>Description: | Rich Burn: 25 ppmvd @ 15% O2 (0.44 g/bhp-hr) or 96% reduction by weight; Lean Burn: 1.0 g/bhp-hr                 |  |  |  |  |
|          | Basis:                     | Achieved in Practice                                                                                             |  |  |  |  |
| SOx      | Standard:                  | See Description                                                                                                  |  |  |  |  |
|          | Technology<br>Description: | Use of natural gas fuel or equivalent                                                                            |  |  |  |  |
|          | Basis:                     | Achieved in Practice                                                                                             |  |  |  |  |
| PM10     | Standard:                  | See Description                                                                                                  |  |  |  |  |
|          | Technology Description:    | Use of natural gas fuel or equivalent                                                                            |  |  |  |  |
|          | Basis:                     | Achieved in Practice                                                                                             |  |  |  |  |
| PM2.5    | Standard:                  | See Description                                                                                                  |  |  |  |  |
| 1 1112.0 | Technology<br>Description: | Use of natural gas fuel or equivalent                                                                            |  |  |  |  |
|          | Basis:                     | Achieved in Practice                                                                                             |  |  |  |  |
| СО       | Standard:                  | See Description                                                                                                  |  |  |  |  |
|          | Technology<br>Description: | 2.0 g/bhp-hr                                                                                                     |  |  |  |  |
|          | Basis:                     | Achieved in Practice                                                                                             |  |  |  |  |
| LEAD     | Standard:                  |                                                                                                                  |  |  |  |  |
|          | Technology<br>Description: |                                                                                                                  |  |  |  |  |
|          | Basis:                     |                                                                                                                  |  |  |  |  |

Comments: T-BACT is equivalent to BACT for VOC

Printed: 8/11/2021

# ACTIVE

CATEGORY Type: IC ENGINE SPARK-STANDBY

BACT Category: Minor Source BACT

BACT Determination Number: 285 BACT Determination Date: 8/11/2021

**Equipment Information** 

**Permit Number:** N/A -- Generic BACT Determination

Equipment Description: IC ENGINE SPARK-STANDBY

Unit Size/Rating/Capacity: ≥ 500 BHP

**Equipment Location:** 

EXPIRED

# **BACT Determination Information**

| District | Contact: Joe Ca            | arle Phone No.: (916) 874 - 4838 email: jcarle@airquality.org                                                    |  |  |  |  |
|----------|----------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| ROCs     | Standard:                  | See Description                                                                                                  |  |  |  |  |
| ROOS     | Technology<br>Description: | Rich Burn: 60 ppmvd @ 15% O2 as methane (0.29 g/bhp-hr); Lean Burn: 206 ppmvd @ 15% O2 as methane (1.0 g/bhp-hr) |  |  |  |  |
|          | Basis:                     | Achieved in Practice                                                                                             |  |  |  |  |
| NOx      | Standard:                  | See Description                                                                                                  |  |  |  |  |
|          | Technology<br>Description: | Rich Burn: 25 ppmvd @ 15% O2 (0.44 g/bhp-hr); Lean Burn: 0.5 g/bhp-hr                                            |  |  |  |  |
|          | Basis:                     | Achieved in Practice                                                                                             |  |  |  |  |
| SOx      | Standard:                  | See Description                                                                                                  |  |  |  |  |
|          | Technology<br>Description: | Use of natural gas fuel or equivalent                                                                            |  |  |  |  |
|          | Basis:                     | Achieved in Practice                                                                                             |  |  |  |  |
| PM10     | Standard:                  | See Description                                                                                                  |  |  |  |  |
|          | Technology Description:    | 0.0099 lb/MMBtu                                                                                                  |  |  |  |  |
|          | Basis:                     | Achieved in Practice                                                                                             |  |  |  |  |
| PM2.5    | Standard:                  | See Description                                                                                                  |  |  |  |  |
|          | Technology Description:    | 0.0099 lb/MMBtu                                                                                                  |  |  |  |  |
|          | Basis:                     | Achieved in Practice                                                                                             |  |  |  |  |
| СО       | Standard:                  | See Description                                                                                                  |  |  |  |  |
|          | Technology<br>Description: | 1.5 g/bhp-hr                                                                                                     |  |  |  |  |
|          | Basis:                     | Achieved in Practice                                                                                             |  |  |  |  |
| LEAD     | Standard:                  |                                                                                                                  |  |  |  |  |
|          | Technology<br>Description: |                                                                                                                  |  |  |  |  |
|          | Basis:                     |                                                                                                                  |  |  |  |  |

Comments: T-BACT is equivalent to BACT for VOC

Printed: 8/11/2021



# **BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION**

|                                     | <b>DETERMINATION NOS.:</b>                                                 | 284 & 285       |  |
|-------------------------------------|----------------------------------------------------------------------------|-----------------|--|
|                                     | DATE:                                                                      | August 11, 2021 |  |
| EXPIRED                             | ENGINEER:                                                                  | J. Carle        |  |
|                                     |                                                                            |                 |  |
| Category/General Equip Description: | Internal Combustion (I.C.) Eng                                             | ine             |  |
| Equipment Specific Description:     | I.C. Engine Spark Ignited – Standby, Gaseous-<br>fueled (Excluding Biogas) |                 |  |
| Equipment Size/Rating:              | Engines < 500 BHP (BACT #2<br>Engines ≥ 500 BHP (BACT #2                   | ,               |  |
| Previous BACT Det. No.:             | BACT #208 (Engines < 500 BH<br>BACT #209 (Engines ≥ 500 BH                 | ,               |  |

These Best Available Control Technology (BACT) determinations will update BACT Determination #208 & 209 for I.C. Engine Spark Ignited – Standby, Gaseous-fueled (Excluding Biogas) for engines rated < 500 bhp and  $\geq$  500 bhp respectively, which went into effect December 28, 2018.

Spark Ignited I.C. Engines – Standby use gaseous fuel to operate and provide emergency electrical power, emergency water pumping for flood control or firefighting, emergency potable water pumping, or emergency sewage pumping. Engines permitted as emergency standby are used in two ways: 1) as part of a generator system or 2) as a direct drive pump. As part of a generator, typical uses include providing power to life safety systems, building equipment, or computer equipment. As part of a direct drive pump, typical uses are for fire suppression, potable water supply or sewage pumping, the use of which is tied to an emergency event.

This determination will also include Best Available Control Technology for Toxics (T-BACT) for the hazardous air pollutants (HAP) associated with gaseous fuel combustion.

## **BACT/T-BACT ANALYSIS**

#### A. ACHIEVED IN PRACTICE (Rule 202, §205.1a):

The following control technologies are currently employed as BACT/T-BACT for standby, spark ignited, gaseous-fueled, I.C. engines by the following agencies and air pollution control districts:

Note: Tables 3.2-1, 3.2-2, and 3.2-3 of AP-42 list benzene, formaldehyde, PAHs, naphthalene, acetaldehyde, acrolein, propylene, toluene, xylenes, ethyl benzene, and hexane as the primary drivers for health risks associated with natural gas combustion. These HAPs/organic compounds are emitted as VOC and the same control technologies that control VOCs also control the listed HAPs.

## **US EPA**

# <u>BACT</u> Source: EPA RACT/BACT/LAER Clearinghouse (See Attachment A)

|           | Emergency Standby, Natural Gas-fired (including propane and LPG), < 500 BHP, IC Engines |                                                  |                     |                |                |  |
|-----------|-----------------------------------------------------------------------------------------|--------------------------------------------------|---------------------|----------------|----------------|--|
| Pollutant | Standard                                                                                | Control Technology                               | Engine Burn<br>Type | Permit<br>Date | RBLC ID        |  |
| VOC       | 1.0 g/bhp-hr                                                                            | None listed                                      | Unknown             | 9/6/2018       | <u>WI-0267</u> |  |
| NOx       | 0.5 g/bhp-hr                                                                            | Good combustion practices                        | Unknown             | 4/16/2013      | <u>IN-0167</u> |  |
| SOx       | N/A (B)                                                                                 | Use of natural gas and good combustion practices | Unknown             | 4/16/2013      | <u>IN-0167</u> |  |
| PM10      | 0.038 g/bhp-hr                                                                          | None listed                                      | Unknown             | 4/15/2014      | <u>CA-1225</u> |  |
| PM2.5 (A) | 0.038 g/bhp-hr                                                                          | None listed                                      | Unknown             | 4/15/2014      | <u>CA-1225</u> |  |
| СО        | Uncontrolled                                                                            | None listed                                      | Unknown             | 6/25/2018      | <u>IN-0288</u> |  |

- (A) This standard is listed as a PM10 standard. The lowest PM2.5 determination listed in the EPA clearinghouse for this category is greater than this PM10 standard. As PM2.5 is a subset of PM10 this would this by default be the lowest PM2.5 standard as well.
- (B) Although this lists an emission limit the control described is the use of natural gas with good combustion practices. It is unclear how the emission limit was calculated. Since SOx emissions are primarily based on the sulfur content of the fuel the standard will be considered using natural gas with good combustion practices.

|           | Emergency Standby, Natural Gas-fired (including propane and LPG),<br>≥ 500 BHP, IC Engines |                                                  |                     |                |                |  |
|-----------|--------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------|----------------|----------------|--|
| Pollutant | Standard                                                                                   | Control Technology                               | Engine Burn<br>Type | Permit<br>Date | RBLC ID        |  |
| VOC       | 0.5 g/bhp-hr                                                                               | Oxidation catalyst                               | Lean                | 12/5/2016      | MI-0424        |  |
| NOx       | 0.5 g/bhp-hr                                                                               | Lean burn combustion                             | Unknown             | 4/16/2013      | <u>IN-0167</u> |  |
| SOx       | N/A (A)                                                                                    | Use of natural gas and good combustion practices | Unknown             | 4/24/2014      | <u>IN-0185</u> |  |
| PM10      | 0.00999<br>lb/MMBtu                                                                        | Good combustion practices                        | Unknown             | 12/4/2017      | <u>MI-0401</u> |  |
| PM2.5     | 0.00999<br>lb/MMBtu                                                                        | Good combustion practices                        | Unknown             | 12/4/2017      | <u>MI-0401</u> |  |
| СО        | 0.8 g/bhp-hr                                                                               | Oxidation catalyst                               | Lean                | 12/5/2016      | <u>MI-0424</u> |  |

<sup>(</sup>A) Although this lists an emission limit the control described is the use of natural gas with good combustion practices. It is unclear how the emission limit was calculated. Because, SOx emissions are primarily based on the sulfur content of the fuel the standard will be considered using natural gas with good combustion practices.

# **T-BACT**

There are no T-BACT standards published in the clearinghouse for this category.

# **RULE REQUIREMENTS:**

40 CFR Part 60 Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines: This regulation applies to owners/operators of new stationary spark ignition engines (SI ICE) that commenced construction after June 12, 2006. [40 CFR §60.4230(a)(4)]

## 40 CFR §60.4233(d)

Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 BHP) must comply with the emission standards of Table 1 to this subpart for their emergency stationary SI ICE (applies to both lean and rich burn engines).

| 40 CFR Subpart JJJJ Table 1: Emission Standards |                                                                                 |                     |                                                                      |           |          |  |
|-------------------------------------------------|---------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------|-----------|----------|--|
| Engine Type and Fuel                            | Maximum Engine<br>Power                                                         | Manufacture<br>Date | Emission Standards (A)<br>g/bhp-hr<br>(ppmvd at 15% O <sub>2</sub> ) |           |          |  |
|                                                 |                                                                                 |                     | NOx                                                                  | СО        | VOC (C)  |  |
| Emergency (P)                                   | 25 <hp<130< td=""><td>1/1/200</td><td>10</td><td>387</td><td>N/A</td></hp<130<> | 1/1/200             | 10                                                                   | 387       | N/A      |  |
| Emergency (B)                                   | HP≥130                                                                          | -                   | 2.0 (160)                                                            | 4.0 (540) | 1.0 (86) |  |

- (A) Owners and operators of stationary non-certified SI engines may choose to comply with the emission standards in units of either g/bhp-hr or ppmvd at 15% O2
- (B) The emission standards applicable to emergency engines between 25 BHP and 130 BHP are in terms of NOx + HC. This category applies to both lean and rich burn engines
- (C) For purposes of this subpart, when calculating emissions of VOC compounds, emissions of formaldehyde should not be included.

40 CFR Part 63 Subpart ZZZZ – National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines: This regulation applies to owners/operators of stationary reciprocating internal combustion engines (RICE) located at both major and area sources of Hazardous Air Pollutant (HAP) emissions. [40 CFR §63.6585]

## 40 CFR §63.6590(c)

An affected source that meets any of the criteria in paragraphs (1) through (7) of this section must meet the requirements of this part by meeting the requirements of 40 CFR part 60 subpart IIII, for compression ignition engines or 40 CFR part 60 subpart JJJJ, for spark ignition engines. No further requirements apply for such engines under this part.

# California Air Resource Board (CARB)

## **BACT**

Source: <u>CARB BACT Clearinghouse</u> (See Attachment B)

Currently there are two BACT determinations in the CARB BACT Clearinghouse, which are summarized in Attachment B. The District has concluded that these determinations have not been achieved in practice for this equipment category for the reasons described below.

<u>SCAQMD ID 361525:</u> The unit detail on the CARB website for this determination is listed as backup/emergency, although it is categorized on the <u>SCAQMD LAER/BACT webpage</u> as non-emergency. The actual <u>SCAQMD Determination A/N 361525</u> states that although the engine is used for backup purposes, it is permitted to operate over 200 hours per year. Under Sac Metro AQMD regulation this engine would be considered prime power and, therefore, would not fit under the equipment category of this BACT determination.

SCAQMD ID 359876: SCAQMD Determination A/N 359876 states that the AQMD is reconsidering the BACT requirement for future applications of this type. As shown later in this determination the SCAQMD BACT guidelines for non-major facilities category for emergency, spark-ignited, IC engines was updated in 2016 and the standards listed A/N 359876 were not listed to be achieved in practice. Additionally, determination A/N 359876 states that source testing was not required and, therefore, the standards were never verified in the field.

#### T-BACT

There are no T-BACT standards published in the clearinghouse for this category.

#### **RULE REQUIREMENTS:**

CARB does not have a statewide rule for control of stationary spark-ignited IC engines. However, the state develops, when necessary, guidelines that set Reasonable Available Control Technology (RACT) and Best Available Retrofit Technology (BARCT). These guidelines establish the minimum requirements for RACT and BARCT that Districts must consider when developing all feasible measures for attainment of the California Ambient Air Quality Standards.

# <u>CARB RACT/BARCT Guidelines for Stationary Spark-Ignited Internal Combustion</u> Engines (11/2001):

This document presents the determination of reasonably available control technology (RACT) and best available retrofit control technology (BARCT) for controlling NOx, VOC, and CO from stationary, spark-ignited reciprocating internal combustion engines. On page IV-14 of the document, emergency standby engines are listed as exempt from the recommended emission limits. Therefore, this guideline is not applicable to this BACT determination.

# Sacramento Metropolitan AQMD

**BACT** 

Source: SMAQMD BACT Clearinghouse

| BACT Determination #208 - IC Engine, Spark-ignited, Standby, < 500 BHP |                                                                                 |                                                         |  |  |  |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|
| Pollutant                                                              | Rich Burn Standard                                                              | Lean Burn Standard                                      |  |  |  |
| VOC                                                                    | 60 ppmv @ 15% O <sub>2</sub> as methane (0.29 g/bhp-hr)                         | 206 ppmv @ 15% O <sub>2</sub> as methane (1.0 g/bhp-hr) |  |  |  |
| NOx                                                                    | 25 ppmvd @ 15% O <sub>2</sub> (0.44 g/bhp-hr);<br>or<br>96% reduction by weight | 1.0 g/bhp-hr                                            |  |  |  |
| SOx                                                                    | Natural gas fuel or equivalent                                                  | Natural gas fuel or equivalent                          |  |  |  |
| PM10                                                                   | Natural gas fuel or equivalent                                                  | Natural gas fuel or equivalent                          |  |  |  |
| PM2.5                                                                  | Natural gas fuel or equivalent                                                  | Natural gas fuel or equivalent                          |  |  |  |
| со                                                                     | 2.0 g/bhp-hr                                                                    | 2.0 g/bhp-hr                                            |  |  |  |

| BACT Determination #209 - IC Engine, Spark-ignited, Standby, ≥ 500 BHP |                                                                                 |                                                         |  |  |  |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|
| Pollutant                                                              | Rich Burn Standard                                                              | Lean Burn Standard                                      |  |  |  |
| VOC                                                                    | 60 ppmv @ 15% O <sub>2</sub> as methane (0.29 g/bhp-hr)                         | 206 ppmv @ 15% O <sub>2</sub> as methane (1.0 g/bhp-hr) |  |  |  |
| NOx                                                                    | 25 ppmvd @ 15% O <sub>2</sub> (0.44 g/bhp-hr);<br>or<br>96% reduction by weight | 0.5 g/bhp-hr                                            |  |  |  |
| SOx                                                                    | Natural gas fuel or equivalent                                                  | Natural gas fuel or equivalent                          |  |  |  |
| PM10                                                                   | 0.0099 lb/MMBtu                                                                 | 0.0099 lb/MMBtu                                         |  |  |  |
| PM2.5                                                                  | 0.0099 lb/MMBtu                                                                 | 0.0099 lb/MMBtu                                         |  |  |  |
| СО                                                                     | 1.5 g/bhp-hr                                                                    | 1.5 g/bhp-hr                                            |  |  |  |

# **T-BACT**

T-BACT is equivalent to BACT for VOC.

## **RULE REQUIREMENTS:**

Rule 412 – Stationary Internal Combustion Engines Located at Major Stationary Sources of NOx (Adopted 6/1/1995)

This rule applies to any stationary internal combustion engine rated at more than 50 BHP located at a major stationary source of NOx. Section 110 of this rule states that operation of stationary internal combustion engines used for emergency standby are exempt from the standards of this rule. Therefore, this rule is not applicable to this BACT determination.

# Rule 420 – Sulfur Content of Fuels (8/13/81)

No person shall burn any gaseous fuels containing sulfur compounds in excess of 50 grains per 100 cubic feet, calculated as hydrogen sulfide at standard conditions, or any liquid fuel or solid fuel having a sulfur content in excess of 0.5% by weight.

#### South Coast AQMD

# **BACT**

Source: SCAQMD BACT Guidelines for Non-Major Polluting Facilities, page 76 (2/1/19)

| I.C. Engine, Stationary, Emergency, Spark Ignition |                              |                              |                                               |                              |                                               |  |
|----------------------------------------------------|------------------------------|------------------------------|-----------------------------------------------|------------------------------|-----------------------------------------------|--|
| Rating/Size                                        | VOC                          | NOx                          | SOx                                           | СО                           | PM                                            |  |
| < 130 HP                                           | 1.5 g/bhp-hr<br>(10/20/2000) | 1.5 g/bhp-hr<br>(10/20/2000) | See Clean Fuels<br>Policy<br>(10/20/2000) (A) | 2.0 g/bhp-hr<br>(10/20/2000) | See Clean Fuels<br>Policy<br>(10/20/2000) (A) |  |
| ≥ 130 HP                                           | 1.0 g/bhp-hr<br>(12/02/2016) | 1.5 g/bhp-hr<br>(10/20/2000) | See Clean Fuels<br>Policy<br>(10/20/2000) (A) | 2.0 g/bhp-hr<br>(10/20/2000) | See Clean Fuels<br>Policy<br>(10/20/2000) (A) |  |

<sup>(</sup>A) SCAQMD's Clean Fuels Policy defines a Clean Fuel as one that produces air emissions equivalent to or lower than natural gas. The requirement of a clean fuel is based on engineering feasibility. Engineering feasibility considers the availability of a clean fuel and safety concerns associated with that fuel. SCAQMD's Clean Fuel Policy lists natural gas, methanol, liquid petroleum gas (LPG), and hydrogen as clean fuels.

#### T-BACT

There are no T-BACT standards published in the clearinghouse for this category.

# **RULE REQUIREMENTS:**

Reg XI, Rule 1110.2 – Emissions from Gaseous- and Liquid-Fueled Engines (11/1/19)

Subdivision (i)(1)(B) exempts emergency engines with permit conditions that limit operation to 200 hours or less per year.

# San Joaquin Valley APCD

#### **BACT**

Source: SJVAPCD BACT Guideline 3.1.5 (7/16/18)

| Emergency Gas-Fired IC Engines (A)    |           |     |                                  |  |
|---------------------------------------|-----------|-----|----------------------------------|--|
| Pollutant Engine Burn Rating Standard |           |     |                                  |  |
| VOC                                   | Lean Burn | All | 206 ppmv @ 15% O2 (1.0 g/bhp-hr) |  |
| VOC                                   | Rich Burn | All | 60 ppmv @ 15% O2 (0.29 g/bhp-hr) |  |

| Emergency Gas-Fired IC Engines (A) |                     |           |                                      |  |  |
|------------------------------------|---------------------|-----------|--------------------------------------|--|--|
| Pollutant                          | Engine Burn<br>Type | Rating    | Standard                             |  |  |
|                                    | Lean Burn           | < 500 BHP | 1.0 g/bhp-hr                         |  |  |
| NOx                                | Lean buill          | ≥ 500 BHP | 0.5 g/bhp-hr                         |  |  |
|                                    | Rich Burn           | All       | 25 ppmv @ 15% O2 (0.44 g/bhp-hr)     |  |  |
| SOx                                | All All             |           | Natural Gas, LPG, or Propane as fuel |  |  |
| PM10                               | All                 | All       | Natural Gas, LPG, or Propane as fuel |  |  |
| PM2.5                              | All                 | All       | Natural Gas, LPG, or Propane as fuel |  |  |
| СО                                 | All                 | All       | 2.0 g/bhp-hr                         |  |  |

<sup>(</sup>A) All standards are listed as achieved in practice. No standards were listed as technologically feasible.

# **T-BACT**

There are no T-BACT standards published in the clearinghouse for this category.

## **RULE REQUIREMENTS:**

Rule 4702 - INTERNAL COMBUSTION ENGINES (Amended 11/14/13)

Section 4.2 exempts emergency standby engines from the emission standards established in this rule.

## San Diego County APCD

# **BACT**

Source: NSR Requirements for BACT (June 2011)

There are no BACT standards published in the clearinghouse for this category.

#### **T-BACT**

There are no T-BACT standards published in the clearinghouse for this category.

# **RULE REQUIREMENTS:**

Regulation 4, Rule 69.4 – Stationary Reciprocating Internal Combustion Engines – Reasonably Available Control Technology (7/30/03)

This rule applies to stationary I.C. Engines ≥ 50 BHP located at a stationary source which emits or has a potential to emit 50 tons per year or more of NOx.

Section (b)(2)(ii) of this rule exempts emergency standby engines that do not exceed 52 hours per year for non-emergency purposes.

Regulation 4, Rule 69.4.1 – Stationary Reciprocating Internal Combustion Engines – Best Available Retrofit Control Technology (7/8/20)

This rule applies to stationary I.C. Engines ≥ 50 BHP.

A person shall not operate a **new or replacement emergency standby** stationary internal combustion engine subject to this rule unless:

Uncontrolled NOx emissions are reduced with add-on control equipment by not less than the following:

| Engine Category                                                 | Weight Percent<br>Reduction |
|-----------------------------------------------------------------|-----------------------------|
| Rich-burn engines using fossil derived gaseous fuel or gasoline | 96%                         |
| Lean-burn engines using fossil derived gaseous fuel             | 90%                         |
| Rich-burn engines used exclusively in agricultural operations   | 80%                         |
| Lean-burn engines used exclusively in agricultural operations   | 70%                         |

OR

Emissions are not greater than the following:

| Engine Category                        | Concentration of NOx (A) | Concentration of VOC (B) | Concentration of CO (C) |
|----------------------------------------|--------------------------|--------------------------|-------------------------|
| Rich-burn engines using gaseous fuel   | 25 ppmv                  | 86 ppmv                  | 540 ppmv                |
| Lean-burn engines using gaseous fuel   | 2.0 g/bhp-hr             | 1.0 g/bhp-hr             | 4.0 g/bhp-hr            |
|                                        | or 160 ppmv              | or 86 ppmv               | or 540 ppmv             |
| Black start engines using gaseous fuel | 2.0 g/bhp-hr             | 1.0 g/bhp-hr             | 4.0 g/bhp-hr            |
|                                        | or 160 ppmv              | or 86 ppmv               | or 540 ppmv             |

- (A) Calculated as nitrogen dioxide in ppmv corrected to 15% oxygen on a dry basis, or in grams of NOx per brake horsepower-hour, as indicated
- (B) Calculated as methane in ppmv corrected to 15% oxygen on a dry basis, or in grams of VOC per break horsepower-hour, as indicated, excluding emissions of formaldehyde.
- (C) Calculated as carbon monoxide in ppmv corrected to 15% oxygen on a dry basis, or in grams of CO per break horsepower-hour, as indicated.

# **Bay Area AQMD**

# **BACT**

Source: BAAQMD BACT Guideline 96.3.4 (5/7/03)

| IC Engine – Spark Ignition, Natural Gas Fired, Emergency Engine, ≥ 50 bhp |                                           |                      |  |  |
|---------------------------------------------------------------------------|-------------------------------------------|----------------------|--|--|
| Pollutant                                                                 | Pollutant Standard (A) Typical Technology |                      |  |  |
| VOC                                                                       | 1.0 g/bhp-hr                              | Lean burn technology |  |  |
| NOx                                                                       | 1.0 g/bhp-hr                              | Lean burn technology |  |  |
| SOx                                                                       | No standard                               | Natural gas          |  |  |
| PM10                                                                      | No standard                               | Natural gas          |  |  |
| CO                                                                        | 2.75 g/bhp-hr                             | Lean burn technology |  |  |

BACT Determination I.C. Engine – Standby, Spark-ignited, Gaseous-fueled (Excluding Biogas) Page 9 of 18

(A) All standards listed are achieved in practice. No standards were listed that are technologically feasible and cost effective.

# **T-BACT**

There are no T-BACT standards published in the clearinghouse for this category.

## **RULE REQUIREMENTS:**

Reg 9, Rule 8 – Nitrogen Oxides and Carbon Monoxide from Stationary Internal Combustion Engines (7/25/07)

Section 110.5 of this rule exempts emergency standby engines from the emissions standards in the rule.

# **Summary of Achieved in Practice Control Technologies**

The following control technologies have been identified and are ranked based on stringency:

#### UNIT CONVERSION FOR NOx, VOC & CO

Depending on the agency, VOC, NOx, and CO emission standards were listed in either ppmvd @ 15%  $O_2$  or in g/bhp-hr. For purposes of comparison standards have been converted to the units used in the current SMAQMD BACT standard. The factors used for the NOx and VOC conversion are based on the ppmvd @ 15%  $O_2$  to g/bhp-hr equivalencies used in the previous SMAQMD BACT standard. The conversion factor for CO is based on Santa Barbara County APCD's Piston IC Engine Technical Reference Document for turbocharged natural gas engines.

 $EF_{ppmvd} = (g/bhp-hr)_P * CF_P$ 

Where:

 $(g/bhp-hr)_P = emission rate of pollutant in exhaust$ 

CF<sub>P</sub> = conversion factor of pollutant

 $CF_{VOC}$  = 206  $CF_{NOx}$  = 57  $CF_{CO}$  = 97

# RICH BURN ENGINES - NOx, VOC & CO

The control method for all rich burn engine BACT determinations achieved in practice was through non-selective catalytic reduction (NSCR) or also commonly called a 3-way catalyst. NSCR reduces the emissions for NOx, VOC, and CO using one control device. The level of reduction for each pollutant depends on the air to fuel ratio that is driving the engine. As the air to fuel ratio gets more lean, NOx reduction goes down but VOC and CO reduction goes up. Due to each individual pollutant reduction being interdependent, determinations will be ranked for these three pollutants, with an emphasis on NOx reduction, rather than emission levels for individual pollutants. The table below shows the ranking for achieved in practice standards for both engines less than 500 bhp and engines 500 bhp and greater as

the raking of achieved in practice standards is the same for both categories and there are minimal variations in the standards between the two brake horsepower categories.

| Achieved in Practice Standards for NOx, VOC & CO for Rich Burn Engines |           |                                                                            |                            |  |
|------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------|----------------------------|--|
| Rank                                                                   | Pollutant | Standard (A)                                                               | Source                     |  |
|                                                                        | NOx       | 25 ppmvd (0.44 g/bhp-hr) or 96% reduction by weight                        | SMAQMD<br>BACT             |  |
| 1                                                                      | VOC       | 60 ppmvd (0.29 g/bhp-hr)                                                   |                            |  |
|                                                                        | СО        | CO < 500 bhp: 2.0 g/bhp-hr<br>≥ 500 bhp: 1.5 g/bhp-hr                      |                            |  |
|                                                                        | NOx       | 25 ppmv (0.44 g/bhp-hr)                                                    | SJVAPCD                    |  |
| 2                                                                      | VOC       | 60 ppmv (0.29 g/bhp-hr)                                                    | BACT                       |  |
|                                                                        | СО        | 2.0 g/bhp-hr                                                               | 7/16/2018                  |  |
|                                                                        | NOx       | 25 ppmvd                                                                   | SDCAPCD<br>Rule            |  |
| 3                                                                      | VOC       | 86 ppmvd                                                                   |                            |  |
|                                                                        | СО        | 5.6 g/bhp-hr (540 ppmvd)                                                   | 7/8/2020                   |  |
|                                                                        | NOx       | 57 ppmvd (1.0 g/bhp-hr)                                                    | BAAQMD                     |  |
| 4                                                                      | VOC       | 206 ppmvd (1.0 g/bhp-hr)                                                   | BACT                       |  |
|                                                                        | СО        | 2.75 g/bhp-hr                                                              | 5/7/2003                   |  |
|                                                                        | NOx       | 85.5 ppmvd (1.5 g/bhp-hr)                                                  |                            |  |
| 5                                                                      | VOC       | < 130 bhp: 309 ppmvd (1.5 g/bhp-hr)<br>≥ 130 bhp: 206 ppmvd (1.0 g/bhp-hr) | SCAQMD<br>BACT<br>2/1/2019 |  |
|                                                                        | СО        | 2.0 g/bhp-hr                                                               |                            |  |
| 6                                                                      | All       | No determinations listed specifically for rich burn engines                | EPA                        |  |

<sup>(</sup>A) All PPM values are corrected to 15% oxygen. VOC PPM standards are calculated as methane.

## LEAN BURN ENGINES - NOx, VOC & CO

NOx reduction in spark ignited engines can be reduced through leaning the air/fuel ratio of the engine and use of good combustion practices. Although, as the air/fuel ratio gets leaner and the NOx emissions decrease, the VOC and CO emissions will increase, and engine power decreases. Therefore, emission reduction when operating a lean burn engine is a balance between these three pollutant levels and the engine power. Due to each individual pollutant reduction being interdependent, determinations will be ranked for these three pollutants as a set, with an emphasis on NOx reduction, rather than emission levels for NOx, VOC, and CO individually.

Unlike for engines with a rich air/fuel ratio, NSCR cannot be used on engines with a lean air/fuel ratio due to the composition of the exhaust stream. In order to achieve further NOx reduction, the air/fuel ratio would need to be further leaned which increases other pollutants and compromises the performance of the engine or through add-on Selective Catalytic Reduction (SCR). There are currently no achieved in practice standards that require SCR. It

is discussed later in this determination on the technological feasibility of SCR in this application.

| Achi | Achieved in Practice Standards for NOx, VOC & CO for Lean Burn Engines < 500 BHP |                                                                       |                      |  |
|------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------|--|
| Rank | Pollutant                                                                        | Standard (A)                                                          | Source               |  |
|      | NOx                                                                              | 1.0 g/bhp-hr                                                          | SMAQMD<br>BACT       |  |
| 1    | VOC                                                                              | 206 ppmv (1.0 g/bhp-hr)                                               |                      |  |
|      | СО                                                                               | 2.0 g/bhp-hr                                                          | 12/28/2018           |  |
|      | NOx                                                                              | 1.0 g/bhp-hr                                                          | SJVAPCD              |  |
| 2    | VOC                                                                              | 206 ppmv (1.0 g/bhp-hr)                                               | BACT                 |  |
|      | СО                                                                               | 2.0 g/bhp-hr                                                          | 7/16/2018            |  |
|      | NOx                                                                              | 1.0 g/bhp-hr                                                          | BAAQMD BACT 5/7/2003 |  |
| 3    | VOC                                                                              | 206 ppmvd (1.0 g/bhp-hr)                                              |                      |  |
|      | СО                                                                               | 2.75 g/bhp-hr                                                         |                      |  |
|      | NOx                                                                              | 1.5 g/bhp-hr                                                          | SCAQMD               |  |
| 4    | VOC                                                                              | 206 ppmvd (1.0 g/bhp-hr)                                              | BACT                 |  |
|      | СО                                                                               | 2.0 g/bhp-hr                                                          | 2/1/2019             |  |
|      | NOx                                                                              | 2.0 g/bhp-hr or 160 ppmv                                              | SDCAPCD              |  |
| 5    | VOC                                                                              | 86 ppmv or 1.0 g/bhp-hr                                               | Rule                 |  |
|      | СО                                                                               | 4.0 g/bhp-hr or 540 ppmv                                              | 7/8/2020             |  |
| 6    | All                                                                              | No determinations listed specifically for lean burn engines < 500 bhp | EPA                  |  |

<sup>(</sup>A) All PPM values are corrected to 15% oxygen. VOC PPM standards are calculated as methane.

| Achi | Achieved in Practice Standards for NOx, VOC & CO for Lean Burn Engines ≥ 500 BHP |                          |                   |  |  |
|------|----------------------------------------------------------------------------------|--------------------------|-------------------|--|--|
| Rank | Pollutant                                                                        | Standard (A)             | Source            |  |  |
|      | NOx                                                                              | 0.5 g/bhp-hr             | SMAQMD            |  |  |
| 1    | VOC                                                                              | 206 ppmv (1.0 g/bhp-hr)  | BACT              |  |  |
|      | СО                                                                               | 1.5 g/bhp-hr             | 12/28/2018        |  |  |
|      | NOx                                                                              | 0.5 g/bhp-hr             | - SJVAPCD<br>BACT |  |  |
| 2    | VOC                                                                              | 206 ppmv (1.0 g/bhp-hr)  |                   |  |  |
|      | СО                                                                               | 2.0 g/bhp-hr             | 7/16/2018         |  |  |
|      | NOx                                                                              | 1.0 g/bhp-hr             | BAAQMD            |  |  |
| 3    | VOC                                                                              | 206 ppmvd (1.0 g/bhp-hr) | BACT              |  |  |
|      | СО                                                                               | 2.75 g/bhp-hr            | 5/7/2003          |  |  |

| Achi | Achieved in Practice Standards for NOx, VOC & CO for Lean Burn Engines ≥ 500 BHP |                          |               |  |  |
|------|----------------------------------------------------------------------------------|--------------------------|---------------|--|--|
| Rank | Pollutant                                                                        | Standard (A)             | Source        |  |  |
|      | NOx                                                                              | 1.5 g/bhp-hr             | SCAQMD        |  |  |
| 4    | VOC                                                                              | 206 ppmvd (1.0 g/bhp-hr) | BACT 2/1/2019 |  |  |
|      | СО                                                                               | 2.0 g/bhp-hr             |               |  |  |
|      | NOx                                                                              | 2.0 g/bhp-hr             | EPA RBLC      |  |  |
| 5    | VOC                                                                              | 103 ppmv (0.5 g/bhp-hr)  |               |  |  |
|      | СО                                                                               | 0.8 g/bhp-hr             | MI-0424       |  |  |
|      | NOx                                                                              | 2.0 g/bhp-hr or 160 ppmv | SDCAPCD       |  |  |
| 6    | VOC                                                                              | 86 ppmv or 1.0 g/bhp-hr  | Rule          |  |  |
|      | СО                                                                               | 4.0 g/bhp-hr or 540 ppmv | 7/8/2020      |  |  |

<sup>(</sup>A) All PPM values are corrected to 15% oxygen. VOC PPM standards are calculated as methane.

# PM10 & PM2.5

Typically, PM control for spark ignited engines involve the use of clean fuels and good combustion practices. When permitting, the District assumes all PM emissions are PM2.5 and, therefore, PM10 and PM2.5 standards are equivalent.

|      | Achieved in Practice Standards for PM for Engines < 500 bhp                               |                              |                                                                                                                                                                                                      |  |  |
|------|-------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Rank | Standard/Control Method                                                                   | Source                       | Comments                                                                                                                                                                                             |  |  |
| 1    | Use of natural gas fuel or equivalent                                                     | SMAQMD<br>BACT<br>12/28/2018 |                                                                                                                                                                                                      |  |  |
| 1    | Follow SCAQMD Clean Fuels<br>Policy (policy states use natural<br>gas or equivalent fuel) | SCAQMD<br>BACT<br>2/1/2019   |                                                                                                                                                                                                      |  |  |
| 1    | Use natural gas, LPG, or propane as fuel                                                  | SJVAPCD<br>BACT<br>7/16/2018 |                                                                                                                                                                                                      |  |  |
| 1    | Use natural gas                                                                           | BAAQMD<br>BACT<br>5/7/2003   | BACT only applies to natural gas fired engines                                                                                                                                                       |  |  |
| 2    | No standard                                                                               | SDCAPCD<br>Rule<br>7/8/2020  |                                                                                                                                                                                                      |  |  |
| N/A  | 0.038 g/bhp-hr                                                                            | EPA RBLC<br>ID: CA-1225      | This determination does not specify if the engine is lean or rich burn and therefore it is unknown if the standard is more or less restrictive than just requiring the use of natural gas as a fuel. |  |  |

|      | Achieved in Practice Standards for PM for Engines ≥ 500 bhp                               |                              |                                                                                                                                                                             |  |  |
|------|-------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Rank | Standard/Control Method                                                                   | Source                       | Comments                                                                                                                                                                    |  |  |
| 1    | 0.0099 lb/MMBtu                                                                           | SMAQMD<br>BACT<br>12/28/2018 |                                                                                                                                                                             |  |  |
| 2    | Follow SCAQMD Clean Fuels<br>Policy (policy states use natural<br>gas or equivalent fuel) | SCAQMD<br>BACT<br>2/1/2019   |                                                                                                                                                                             |  |  |
| 2    | Use natural gas, LPG, or propane as fuel                                                  | SJVAPCD<br>BACT<br>7/16/2018 |                                                                                                                                                                             |  |  |
| 2    | Use natural gas                                                                           | BAAQMD<br>BACT<br>5/7/2003   | BACT only applies to natural gas fired engines                                                                                                                              |  |  |
| 3    | 0.00999 lb/MMBtu                                                                          | EPA RBLC<br>ID: MI-0401      | The EPA Clearinghouse does not list the engine burn type (lean or rich burn). Because of this ambiguity, the standard is ranked below other achieved in practice standards. |  |  |
| 4    | No standard                                                                               | SDCAPCD<br>Rule<br>7/8/2020  |                                                                                                                                                                             |  |  |

# <u>SOx</u>

Typically, SOx control for spark ignited engines involve the use of clean fuels and good combustion practices.

|      | Achieved in Practice Standards for SOx                                              |                                    |                                                |  |  |
|------|-------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------|--|--|
| Rank | Standard                                                                            | Source                             | Comments                                       |  |  |
| 1    | Use of natural gas fuel or equivalent                                               | SMAQMD BACT<br>12/28/2018          |                                                |  |  |
| 1    | Follow SCAQMD Clean Fuels Policy (policy states use natural gas or equivalent fuel) | SCAQMD BACT<br>2/1/2019            |                                                |  |  |
| 1    | Use natural gas, LPG, or propane as fuel                                            | SJVAPCD BACT<br>7/16/2018          |                                                |  |  |
| 1    | Use natural gas                                                                     | BAAQMD BACT<br>5/7/2003            | BACT only applies to natural gas fired engines |  |  |
| 1    | Use of natural gas and good combustion practices                                    | EPA RBLC ID: IN-<br>0167 & IN-0185 |                                                |  |  |

|      | Achieved in Practice Standards for SOx |                          |  |  |  |  |
|------|----------------------------------------|--------------------------|--|--|--|--|
| Rank | Rank Standard Source Comments          |                          |  |  |  |  |
| 2    | No standard                            | SDCAPCD Rule<br>7/8/2020 |  |  |  |  |

# **Toxics**

HAPs are emitted as VOC and the same control technologies that control VOCs also control the HAPs and, therefore, the achieved in practice standards for HAPs are the same as for VOC.

# **Summary Table**

The following control technologies have been identified as the most stringent, achieved in practice control technologies:

| Best      | Best Control Technologies Achieved in Practice for Engines < 500 bhp |                                                     |                |  |  |
|-----------|----------------------------------------------------------------------|-----------------------------------------------------|----------------|--|--|
| Pollutant | Equipment/Operation Sub Category Standard                            |                                                     | Source         |  |  |
| VOC       | Rich Burn                                                            | 60 ppmvd (0.29 g/bhp-hr)                            | SMAQMD         |  |  |
| VOC       | Lean Burn                                                            | 206 ppmv (1.0 g/bhp-hr)                             | BACT           |  |  |
| NOx       | Rich Burn                                                            | 25 ppmvd (0.44 g/bhp-hr) or 96% reduction by weight | SMAQMD         |  |  |
|           | Lean Burn                                                            | 1.0 g/bhp-hr                                        | BACT           |  |  |
| SOx       | All Engines                                                          | Use of natural gas fuel or equivalent               | SMAQMD<br>BACT |  |  |
| PM10      | All Engines                                                          | Use of natural gas fuel or equivalent               | SMAQMD<br>BACT |  |  |
| PM2.5     | All Engines                                                          | Use of natural gas fuel or equivalent               | SMAQMD<br>BACT |  |  |
| СО        | All Engines                                                          | 2.0 g/bhp-hr                                        | SMAQMD<br>BACT |  |  |
| VHAPs (A) | Rich Burn                                                            | 60 ppmvd (0.29 g/bhp-hr)                            | SMAQMD         |  |  |
| (T-BACT)  | Lean Burn                                                            | 206 ppmv (1.0 g/bhp-hr)                             | BACT           |  |  |

<sup>(</sup>A) A full list of the volatile hazardous air pollutants (VHAP) from natural gas combustion can be found in AP-42, Section 3.2 Natural Gas-fired Reciprocating Engines, Tables 3.2-1, 3.2-2, and 3.2-3.

| Best      | Best Control Technologies Achieved in Practice for Engines ≥ 500 bhp |                                                     |                |  |  |
|-----------|----------------------------------------------------------------------|-----------------------------------------------------|----------------|--|--|
| Pollutant | Equipment/Operation Sub Category                                     | Standard                                            | Source         |  |  |
| VOC       | Rich Burn                                                            | 60 ppmvd (0.29 g/bhp-hr)                            | SMAQMD         |  |  |
| VOC       | Lean Burn                                                            | 206 ppmv (1.0 g/bhp-hr)                             | BACT           |  |  |
| NOx       | Rich Burn                                                            | 25 ppmvd (0.44 g/bhp-hr) or 96% reduction by weight |                |  |  |
|           | Lean Burn                                                            | 0.5 g/bhp-hr                                        | BACT           |  |  |
| SOx       | All Engines                                                          | Use of natural gas fuel or equivalent               | SMAQMD<br>BACT |  |  |
| PM10      | All Engines                                                          | 0.0099 lb/MMBtu                                     | SMAQMD<br>BACT |  |  |
| PM2.5     | All Engines                                                          | 0.0099 lb/MMBtu                                     | SMAQMD<br>BACT |  |  |
| CO        | All Engines                                                          | 1.5 g/bhp-hr                                        | SMAQMD<br>BACT |  |  |
| VHAPs (A) | Rich Burn                                                            | 60 ppmvd (0.29 g/bhp-hr)                            | SMAQMD         |  |  |
| (T-BACT)  | Lean Burn                                                            | 206 ppmv (1.0 g/bhp-hr)                             | BACT           |  |  |

<sup>(</sup>A) A full list of the volatile hazardous air pollutants (VHAP) from natural gas combustion can be found in AP-42, Section 3.2 Natural Gas-fired Reciprocating Engines, Tables 3.2-1, 3.2-2, and 3.2-3.

# B. TECHNOLOGICALLY FEASIBLE AND COST EFFECTIVE (Rule 202, §205.1.b.):

# **Technologically Feasible Alternatives:**

Any alternative basic equipment, fuel, process, emission control device or technique, singly or in combination, determined to be technologically feasible by the Air Pollution Control Officer.

The table below shows the technologically feasible alternatives identified as capable of reducing emissions beyond the levels determined to be "Achieved in Practice" as per Rule 202, §205.1.a.

|           | Technologically Feasible Alternatives |                                                     |                    |  |  |  |  |  |  |  |
|-----------|---------------------------------------|-----------------------------------------------------|--------------------|--|--|--|--|--|--|--|
| Pollutant | Emission Source<br>Category           | Standard                                            | Source of Standard |  |  |  |  |  |  |  |
| voc       | All Engines                           | No other technologically feasible option identified | N/A                |  |  |  |  |  |  |  |
| NOx       | Lean Burn Engines<br>All Sizes        | SCR                                                 | N/A                |  |  |  |  |  |  |  |
| SOx       | All Engines                           | No other technologically feasible option identified | N/A                |  |  |  |  |  |  |  |
| PM10      | All Engines                           | No other technologically feasible option identified | N/A                |  |  |  |  |  |  |  |
| PM2.5     | All Engines                           | No other technologically feasible option identified | N/A                |  |  |  |  |  |  |  |
| СО        | All Engines                           | No other technologically feasible option identified | N/A                |  |  |  |  |  |  |  |

The District's previous BACT Determination for this equipment category (BACT Determination #208 & 209) (Attachment C) found that installing SCR was not cost effective. The data and methodology for this cost effectiveness calculation came from the EPA Air Pollution Cost Control Manual, Sixth Edition (EPA/452/B-02-001, January 2002). Since the time this BACT Determination was approved, the EPA updated their Air Pollution Cost Manual for SCR control devices (Section 4, Chapter 2, updated 6/12/19). The revised section states, "The procedures for estimating costs presented in this report are based on cost data for SCR retrofits on existing coal-, oil-, and gas-fired boilers for electric generating units larger than 25 MWe (approximately 250 MMBtu/hr). Thus, this report's procedure estimates cost for typical retrofits of such boilers. The methodology for utility boilers also has been extended to large industrial boilers by modifying the capital cost equations and power consumption (electricity costs) equations to use the heat input capacity of the boiler instead of electrical generating capacity. The procedures to estimate capital costs are not directly applicable to other sources other than utility and industrial boilers."

As the new SCR section in the EPA Air Pollution Cost Manual for SCR control devices specifically states that the methodology for calculating capital costs are only applicable for utility and industrial boilers, the District will rely on the cost effectiveness calculations in the previous BACT Determination for this equipment category that found SCR to not be cost effective. Based on this information, the District has determined that SCR is not technically feasible and cost effective for standby, spark-ignited, gaseous-fueled, IC engines.

# **C. SELECTION OF BACT:**

Based on the above analysis, BACT for VOC, NOx, SOx, PM10, PM2.5 and CO will remain at what is currently achieved in practice.

Volatile hazardous air pollutants (VHAP) are the primary driver for health risks associated with gaseous fueled engines. VHAPs are emitted as VOC, and the same control technologies that control VOC also control VHAPs. Therefore, the BACT for VOC and T-BACT for HAPs are the same. See the tables below for a summary of the BACT Determinations.:

| BAC       | BACT FOR I.C. ENGINES, STANDBY, SPARK IGNITED, GASEOUS-FUELED (EXCLUDING BIOGAS), < 500 BHP                                                                |        |  |  |  |  |  |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|--|--|--|
| Pollutant | Standard                                                                                                                                                   | Source |  |  |  |  |  |  |  |
| VOC       | Rich Burn Engines: 60 ppmvd @ 15% O <sub>2</sub> as methane (0.29 g/bhp-hr)<br>Lean Burn Engines: 206 ppmvd @ 15% O <sub>2</sub> as methane (1.0 g/bhp-hr) | SMAQMD |  |  |  |  |  |  |  |
| NOx       | Rich Burn Engines: 25 ppmvd @ 15% O <sub>2</sub> (0.44 g/bhp-hr) or 96% reduction by weight Lean Burn Engines: 1.0 g/bhp-hr                                | SMAQMD |  |  |  |  |  |  |  |
| SOx       | Use of natural gas fuel or equivalent                                                                                                                      | SMAQMD |  |  |  |  |  |  |  |
| PM10      | Use of natural gas fuel or equivalent                                                                                                                      | SMAQMD |  |  |  |  |  |  |  |
| PM2.5     | Use of natural gas fuel or equivalent                                                                                                                      | SMAQMD |  |  |  |  |  |  |  |
| СО        | 2.0 g/bhp-hr                                                                                                                                               | SMAQMD |  |  |  |  |  |  |  |

| T-BA               | T-BACT FOR I.C. ENGINES, STANDBY, SPARK IGNITED, GASEOUS-FUELED (EXCLUDING BIOGAS), < 500 BHP |        |  |  |  |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------|--------|--|--|--|--|--|--|
| Pollutant          | Standard Source                                                                               |        |  |  |  |  |  |  |
| HAP <sup>(A)</sup> | Rich Burn Engines: 60 ppmvd (0.29 g/bhp-hr)<br>Lean Burn Engines: 206 ppmv (1.0 g/bhp-hr)     | SMAQMD |  |  |  |  |  |  |

<sup>(</sup>A) A full list of the hazardous air pollutants (HAP) from natural gas combustion can be found in AP-42, Section 3.2 Natural Gas-fired Reciprocating Engines, Tables 3.2-1, 3.2-2, and 3.2-3.

| BAC       | BACT FOR I.C. ENGINES, STANDBY, SPARK IGNITED, GASEOUS-FUELED (EXCLUDING BIOGAS), ≥ 500 BHP                                                                |        |  |  |  |  |  |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|--|--|--|
| Pollutant | Standard                                                                                                                                                   | Source |  |  |  |  |  |  |  |
| VOC       | Rich Burn Engines: 60 ppmvd @ 15% O <sub>2</sub> as methane (0.29 g/bhp-hr)<br>Lean Burn Engines: 206 ppmvd @ 15% O <sub>2</sub> as methane (1.0 g/bhp-hr) | SMAQMD |  |  |  |  |  |  |  |
| NOx       | Rich Burn Engines: 25 ppmvd @ 15% O <sub>2</sub> (0.44 g/bhp-hr) or 96% reduction by weight Lean Burn Engines: 0.5 g/bhp-hr                                | SMAQMD |  |  |  |  |  |  |  |
| SOx       | Use of natural gas fuel or equivalent                                                                                                                      | SMAQMD |  |  |  |  |  |  |  |
| PM10      | 0.0099 lb/MMBtu                                                                                                                                            | SMAQMD |  |  |  |  |  |  |  |
| PM2.5     | 0.0099 lb/MMBtu                                                                                                                                            | SMAQMD |  |  |  |  |  |  |  |
| СО        | 1.5 g/bhp-hr                                                                                                                                               | SMAQMD |  |  |  |  |  |  |  |

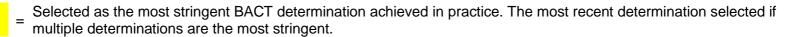
| T-BAC              | T-BACT FOR I.C. ENGINES, STANDBY, SPARK IGNITED, GASEOUS-FUELED (EXCLUDING BIOGAS), ≥ 500 BHP                                                              |        |  |  |  |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|--|--|
| Pollutant          | t Standard Source                                                                                                                                          |        |  |  |  |  |  |  |
| HAP <sup>(A)</sup> | Rich Burn Engines: 60 ppmvd @ 15% O <sub>2</sub> as methane (0.29 g/bhp-hr)<br>Lean Burn Engines: 206 ppmvd @ 15% O <sub>2</sub> as methane (1.0 g/bhp-hr) | SMAQMD |  |  |  |  |  |  |

<sup>(</sup>A) A full list of the hazardous air pollutants (HAP) from natural gas combustion can be found in AP-42, Section 3.2 Natural Gas-fired Reciprocating Engines, Tables 3.2-1, 3.2-2, and 3.2-3.

APPROVED BY: Brian 7 Krebs DATE: 08-11-2021

# **Attachment A**

**Review of BACT Determinations published by EPA** 


List of BACT determinations published in EPA's RACT/BACT/LAER Clearinghouse (RBLC) for Natural Gas (includes propane & liquefied petroleum gas) I.C. Engines:

|                |                    | Spark-lg            | ınited, Emerge | ncy Standby,        | IC Engines « | < 500 BHP (Proces                  | ss Code: 17.230)                                 |                        |
|----------------|--------------------|---------------------|----------------|---------------------|--------------|------------------------------------|--------------------------------------------------|------------------------|
| RBLC#          | Permit<br>Date (A) | Rating (B)          | Fuel           | Engine<br>Burn Type | Pollutant    | Standard (C)                       | Control Technology                               | Case-By-<br>Case Basis |
|                |                    |                     |                |                     | СО           | 4.0 g/hp-hr                        | None listed                                      | BACT-PSD               |
| <u>CA-1225</u> | 4/25/2014          | 256 BHP             | Natural Gas    | Unknown             | NOx          | 0.78 lb/hr<br>(1.38 g/hp-hr)       | None listed                                      | BACT-PSD               |
|                |                    |                     |                |                     | PM10         | 0.0216 lb/hr<br>(0.038 g/hp-hr)    | None listed                                      | BACT-PSD               |
| <u>IA-0102</u> | 2/1/2012           | 225 KW<br>(302 BHP) | Natural Gas    | Unknown             | VOC          | 0.66 lb/hr<br>(1.0 g/hp-hr)        | Good combustion practices                        | BACT-PSD               |
|                |                    |                     |                |                     | NOx          | 0.5 g/hp-hr                        | Good combustion practices                        | BACT-PSD               |
|                |                    | 6/2013 300 BHP      |                | Unknown             | PM10         | 0.2 g/kw-hr<br>(0.15 g/hp-hr)      | Good combustion practices                        | BACT-PSD               |
| <u>IN-0167</u> | 4/16/2013          |                     | HP Natural Gas |                     | PM2.5        | 0.2 g/kw-hr<br>(0.15 g/hp-hr)      | Good combustion practices                        | BACT-PSD               |
|                |                    |                     |                |                     | SO2          | 0.0015 g/kw-hr<br>(0.0011 g/hp-hr) | Use of natural gas and good combustion practices | BACT-PSD               |
| IN-0288        | 6/25/2018          | 100 KW<br>(134 BHP) | Natural Gas    | Unknown             | СО           | 0.317 lb/MMBtu<br>(D)              | None listed                                      | BACT-PSD               |
|                |                    | (134 BHP)           |                |                     | VOC          | 0.36 lb/MMBtu                      | None listed                                      | BACT-PSD               |
| LA-0276        | 12/15/2016         | 150 KW<br>(201 BHP) | Natural Gas    | Unknown             | VOC          | 1.0 g/hp-hr                        | None listed                                      | BACT-PSD               |
| <u>LA-0311</u> | 7/15/2013          | 300 BHP             | Natural Gas    | Unknown             | СО           | 3.31 lb/hr<br>(5.0 g/hp-hr)        | Good combustion practices                        | BACT-PSD               |
| MI 0440        | E/40/004 4         | 250 DUD             | Natural Co     | Llakaass            | CO           | N/A                                | Good combustion practices                        | BACT-PSD               |
| <u>MI-0413</u> | 5/12/2014          | 250 BHP             | Natural Gas    | Unknown             | SO2          | 0.002 g/hp-hr                      | None listed                                      | BACT-PSD               |

|                | Spark-Ignited, Emergency Standby, IC Engines < 500 BHP (Process Code: 17.230) |                     |             |                     |                       |               |                                               |                        |  |  |  |
|----------------|-------------------------------------------------------------------------------|---------------------|-------------|---------------------|-----------------------|---------------|-----------------------------------------------|------------------------|--|--|--|
| RBLC#          | Permit<br>Date (A)                                                            | Rating (B)          | Fuel        | Engine<br>Burn Type | Pollutant             | Standard (C)  | Control Technology                            | Case-By-<br>Case Basis |  |  |  |
|                |                                                                               |                     |             |                     | CO                    | 4.0 g/hp-hr   | Good combustion practices                     | BACT-PSD               |  |  |  |
|                |                                                                               |                     |             |                     | NOx                   | 2.0 g/hp-hr   | Good combustion practices                     | BACT-PSD               |  |  |  |
| SC-0182        | 10/31/2017                                                                    | Unknown             | LPG         | Unknown             | PM10                  | N/A           | Good combustion practices                     | BACT-PSD               |  |  |  |
|                |                                                                               |                     |             | -                   | PM2.5                 | N/A           | Good combustion practices                     | BACT-PSD               |  |  |  |
|                |                                                                               |                     |             |                     | VOC                   | 1.0 g/hp-hr   | Good combustion practices                     | BACT-PSD               |  |  |  |
| VA-0321        | 3/12/2013                                                                     | 100 KW<br>(134 BHP) | LPG         | Unknown             | со                    | 4.0 g/hp-hr   | Good combustion practices                     | BACT-PSD               |  |  |  |
|                |                                                                               |                     |             |                     | CO                    | 4.0 g/hp-hr   | Good combustion practices                     | N/A                    |  |  |  |
|                |                                                                               |                     |             |                     | NOx                   | 2.0 g/hp-hr   | Good combustion practices                     | N/A                    |  |  |  |
| VA-0325        | 6/17/16                                                                       | 150 KW              | LPG         | Unknown             | PM10                  | 0.19 g/hp-hr  | None listed                                   | N/A                    |  |  |  |
| <u>VA-0323</u> | 0/1//10                                                                       | (201 BHP)           |             | Onniown             | PM2.5<br>(filterable) | 0.019 g/hp-hr | Low sulfur fuel and good combustion practices | N/A                    |  |  |  |
|                |                                                                               |                     |             |                     | VOC                   | 1.0 g/hp-hr   | None listed                                   | N/A                    |  |  |  |
| WI-0267        | 9/6/2018                                                                      | 80 BHP              | Natural Gas | Unknown             | VOC                   | 1.0 g/hp-hr   | None listed                                   | BACT-PSD               |  |  |  |

<sup>(</sup>A) Due to the large number of entries only determinations made (based on Permit Date) entered since 01/01/2011 are included in the above table.

<sup>(</sup>D) This standard is equivalent to the EPA AP-42, Table 3.2-3 for 4-stroke, lean burn engines, uncontrolled emission standard for CO at a 90 – 105% Load (7/00).



<sup>(</sup>B) Break horsepower in parenthesis are converted from the listed kilowatt rating using a factor of 1.341 kw per hp.

<sup>(</sup>C) Standards in parenthesis are converted from the listed standard in some cases using the listed horsepower and/or a conversion factor of 1.341 kw per hp.

|                    |                    | Spark-Ig         | nited, Emerger | ncy Standby,        | IC Engines | ≥ 500 BHP (Proces                  | ss Code: 17.130)                                 |                        |
|--------------------|--------------------|------------------|----------------|---------------------|------------|------------------------------------|--------------------------------------------------|------------------------|
| RBLC#              | Permit<br>Date (A) | Rating (B)       | Fuel           | Engine<br>Burn Type | Pollutant  | Standard (C)                       | Control Technology                               | Case-By-<br>Case Basis |
| AL-0301            | 7/22/2014          | 400 KW           | Propane        | Unknown             | СО         | 7.5 lb/1000 gal                    | None listed                                      | BACT-PSD               |
| <u>AL-0301</u>     | 7/22/2014          | (539 BHP)        | Propane        | UNKHOWN             | NOx        | 13 lb/1000 gal                     | None listed                                      | BACT-PSD               |
|                    |                    |                  |                |                     | СО         | 1.0 g/hp-hr                        | Oxidation catalyst                               | BACT-PSD               |
| <u>CA-1192</u> (F) | 6/21/11            | 860 BHP          | Natural Gas    | Lean                | NOx        | 0.21 g/hp-hr                       | SCR                                              | BACT-PSD               |
| (- /               |                    |                  |                |                     | PM10       | 0.34 g/hp-hr                       | Use PUC pipeline natural gas                     | BACT-PSD               |
|                    |                    |                  |                |                     | NOx        | 0.5 g/hp-hr                        | Good combustion practices                        | BACT-PSD               |
|                    |                    | /16/2013 620 BHP | Natural Gas    | Unknown             | SO2        | 0.0015 g/kw-hr<br>(0.0011 g/hp-hr) | Good combustion practices                        | BACT-PSD               |
| <u>IN-0167</u>     | 4/16/2013          |                  |                |                     | PM10       | 0.2 g/kw-hr<br>(0.15 g/hp-hr)      | Good combustion practices                        | BACT-PSD               |
|                    |                    |                  |                |                     | PM2.5      | 0.2 g/kw-hr<br>(0.15 g/hp-hr)      | Good combustion practices                        | BACT-PSD               |
|                    |                    |                  |                |                     | PM10       | 0.2 g/kw-hr<br>(0.15 g/hp-hr)      | None listed                                      | BACT-PSD               |
| <u>IN-0185</u>     | 4/24/2014          | 620 BHP          | Natural Gas    | Unknown             | PM2.5      | 0.2 g/kw-hr<br>(0.15 g/hp-hr)      | None listed                                      | BACT-PSD               |
|                    |                    |                  |                |                     | SO2        | 0.0015 g/kw-hr<br>(0.0011 g/hp-hr) | Use of natural gas and good combustion practices | BACT-PSD               |
| LA-0256            | 12/6/2011          | 1010 DUD         | Natural Gas    | Unknown             | PM10       | 0.01 lb/hr (D)<br>(0.0025 g/hp-hr) | Good combustion practices                        | BACT-PSD               |
| LA-0250            | 12/6/2011          | 011 1818 BHP     | Natural Gas    | UTIKITOWIT          | PM2.5      | 0.01 lb/hr (D)<br>(0.0025 g/hp-hr) | Good combustion practices                        | BACT-PSD               |

|                |                    | Spark-Igi                  | nited, Emerger | ncy Standby,        | IC Engines | ≥ 500 BHP (Proces                   | ss Code: 17.130)          |                        |
|----------------|--------------------|----------------------------|----------------|---------------------|------------|-------------------------------------|---------------------------|------------------------|
| RBLC#          | Permit<br>Date (A) | Rating (B)                 | Fuel           | Engine<br>Burn Type | Pollutant  | Standard (C)                        | Control Technology        | Case-By-<br>Case Basis |
|                |                    |                            |                |                     | NOx        | 2.0 g/hp-hr                         | Good combustion practices | BACT-PSD               |
| <u>LA-0287</u> | 7/21/2014          | 1175 BHP                   | Natural Gas    | Unknown             | PM10       | 0.004 lb/hr (E)<br>(0.0015 g/hp-hr) | Good combustion practices | BACT-PSD               |
|                |                    |                            |                |                     | PM2.5      | 0.005 lb/hr (E)<br>(0.0019 g/hp-hr) | Good combustion practices | BACT-PSD               |
| <u>LA-0311</u> | 7/15/2013          | 2500 BHP                   | Natural Gas    | Unknown             | СО         | 27.56 lb/hr<br>(5.0 g/hp-hr)        | Good combustion practices | BACT-PSD               |
|                |                    |                            |                |                     | NOx        | 0.5 g/hp-hr                         | None listed               | BACT-PSD               |
| <u>MI-0401</u> | 12/21/2011         | 1200 KW<br>(1609 BHP)      | Natural Gas    | Unknown             | PM10       | 0.00999<br>lb/mmbtu                 | None listed               | BACT-PSD               |
|                |                    | (1000 2111)                |                |                     | PM2.5      | 0.00999<br>lb/mmbtu                 | None listed               | BACT-PSD               |
|                |                    |                            |                |                     | CO         | 0.8 g/hp-hr                         | Oxidation catalyst        | BACT-PSD               |
|                |                    | 11 1000 KW (1341 BHP)      |                | Lean                | NOx        | 2.0 g/hp-hr                         | Good combustion practices | BACT-PSD               |
| MI-0412<br>(G) | 12/4/2011          |                            | Natural Gas    |                     | PM10       | 0.01 lb/mmbtu                       | Good combustion practices | BACT-PSD               |
| (-)            |                    | (,                         |                |                     | PM2.5      | 0.01 lb/mmbtu                       | Good combustion practices | BACT-PSD               |
|                |                    |                            |                |                     | VOC        | 0.5 g/hp-hr                         | Oxidation catalyst        | BACT-PSD               |
| MI 0442        | 5/12/2014          | 530 BHP &                  | Natural Gas    | Unknown             | СО         | N/A                                 | Good combustion practices | BACT-PSD               |
| <u>MI-0413</u> | 5/12/2014          | 800 BHP                    | Naturai Gas    | Unknown             | SO2        | N/A                                 | Good combustion practices | BACT-PSD               |
|                |                    |                            | Natural Gas    |                     | СО         | 9.6 lb/hr<br>(2.2 g/hp-hr)          | Good combustion practices | BACT-PSD               |
| MI-0420        | 6/3/2016           | 2016 1506 KW<br>(2020 BHP) |                | Unknown             | NOx        | 4.8 lb/hr<br>(1.1 g/hp-hr)          | Good combustion practices | BACT-PSD               |
|                |                    |                            |                |                     | PM10       | 0.01 lb/mmbtu                       | Good combustion practices | BACT-PSD               |
|                |                    |                            |                |                     | PM2.5      | 0.01 lb/mmbtu                       | Good combustion practices | BACT-PSD               |

|         |                    | Spark-Ig        | nited, Emerger       | ncy Standby,        | IC Engines ? | ≥ 500 BHP (Proces           | ss Code: 17.130)           |                              |
|---------|--------------------|-----------------|----------------------|---------------------|--------------|-----------------------------|----------------------------|------------------------------|
| RBLC#   | Permit<br>Date (A) | Rating (B)      | Fuel                 | Engine<br>Burn Type | Pollutant    | Standard (C)                | Control Technology         | Case-By-<br>Case Basis       |
|         |                    |                 |                      |                     | CO           | 0.8 g/hp-hr                 | Oxidation catalyst         | BACT-PSD                     |
|         |                    |                 |                      |                     | NOx          | 2.0 g/hp-hr                 | Good combustion practices  | BACT-PSD                     |
| MI-0424 | 12/5/2016          | 1462 BHP        | Natural Gas          | Lean                | PM10         | 0.01 lb/mmbtu               | Good combustion practices  | BACT-PSD                     |
|         |                    |                 |                      |                     | PM2.5        | 0.01 lb/mmbtu               | Good combustion practices  | BACT-PSD                     |
|         |                    |                 |                      |                     | VOC          | 0.5 g/hp-hr                 | Oxidation catalyst         | BACT-PSD                     |
|         |                    | l/2017 1818 BHP | 1818 BHP Natural Gas | Lean                | СО           | 11.0 lb/hr<br>(2.7 g/hp-hr) | Good combustion practices  | BACT-PSD                     |
| MI-0426 | 12/4/2017          |                 |                      |                     | Lean         | NOx                         | 4.0 lb/hr<br>(1.0 g/hp-hr) | Turbo charger & after cooler |
|         |                    |                 |                      |                     |              | PM10                        | 0.01 lb/mmbtu              | Good combustion practices    |
|         |                    |                 |                      |                     | PM2.5        | 0.01 lb/mmbtu               | Good combustion practices  | BACT-PSD                     |
|         |                    |                 |                      |                     | CO           | 0.43 g/hp-hr                | Oxidation catalyst         | BACT-PSD                     |
| OK-0153 | 0/4/0040           | 0000 DUD        | National Con-        | Lasa                | NOx          | 0.5 g/hp-hr                 | Lean burn combustion       | BACT-PSD                     |
| (G)     | 3/1/2013           | 2889 BHP        | Natural Gas          | Lean                | PM2.5        | 0.01 lb/mmbtu               | Natural gas combustion     | BACT-PSD                     |
|         |                    |                 |                      |                     | VOC          | 0.44 g/hp-hr                | Oxidation catalyst         | BACT-PSD                     |
| TV 0040 | 40/00/0040         | 4000 DUD        | Notinal Co           | Lagra               | CO           | 1.3 g/hp-hr                 | None listed                | BACT-PSD                     |
| TX-0642 | 12/20/2013         | 1328 BHP        | Natural Gas          | Lean                | NOx          | 2.0 g/hp-hr                 | None listed                | BACT-PSD                     |

- (A) Due to the large number of entries only determinations made (based on Permit Date) entered since 01/01/2011 are included in the above table.
- (B) Break horsepower in parenthesis are converted from the listed kilowatt rating using a factor of 1.341 kw per hp.
- (C) Standards in parenthesis are converted from the listed standard in some cases using the listed horsepower and/or a conversion factor of 1.341 kw per hp.
- (D) BACT was determined to be use of natural gas fuel and good combustion practices. Emission limits for PM10, PM2.5, and PM (TSP) were determined to be <0.01 lb/hr and was established by Louisiana Department of Environmental Quality Permit PSD-LA-754 for Westlake Vinyls Company, LP.
- (E) BACT was determined to be use of natural gas fuel and good combustion practices. There is no associated BACT emission standard listed on Permit PSD-LA-787 for Alexandria Compressor Station by Louisiana Department of Environmental Quality.
- (F) The Ninth Circuit Court of Appeals issued a decision on 8/12/2014 that vacated the permit decision and remanded it to EPA. Therefore, this BACT determination has not yet been achieved in practice. Source: EPA Region IX, Avenal Energy Product.
- (G) The engine in this determination powers an emergency generator but is allowed to operate more than 200 hours per year. Under Sac Metro AQMD regulation this engine would be considered prime power and, therefore, the standards will not be considered in this BACT determination.
  - = Selected as the most stringent BACT determination achieved in practice. The most recent determination selected if multiple determinations are the most stringent.

# **Attachment B**

**Review of BACT Determinations published by ARB** 

List of BACT determinations published in ARB's BACT Clearinghouse for: IC Engine - Stationary, Natural Gas Fuel:

|                       | IC Engines – Stationary, Natural Gas Fueled, Emergency Standby, < 500 BHP |          |          |           |                                    |                                                             |              |                                                             |  |  |  |
|-----------------------|---------------------------------------------------------------------------|----------|----------|-----------|------------------------------------|-------------------------------------------------------------|--------------|-------------------------------------------------------------|--|--|--|
| Source                | Date                                                                      | Rating   | Function | Pollutant | Standard (A)                       | Control Technology                                          |              |                                                             |  |  |  |
|                       |                                                                           |          |          | NOx       | 0.15 g/bhp-hr                      | Three-Way Catalytic Converter and Air/Fuel Ratio Controller |              |                                                             |  |  |  |
| SCAQMD<br>(ID 361525) | 1/17/2002                                                                 | 93.8 BHP | 93.8 BHP | 93.8 BHP  | Driving an Electrical<br>Generator | СО                                                          | 0.6 g/bhp-hr | Three-Way Catalytic Converter and Air/Fuel Ratio Controller |  |  |  |
|                       |                                                                           |          |          | VOC       | 0.15 g/bhp-hr                      | Three-Way Catalytic Converter and Air/Fuel Ratio Controller |              |                                                             |  |  |  |

|                       | IC Engines – Stationary, Natural Gas Fueled, Emergency Standby, ≥ 500 BHP |         |                                 |           |               |                                                                |  |  |  |  |  |
|-----------------------|---------------------------------------------------------------------------|---------|---------------------------------|-----------|---------------|----------------------------------------------------------------|--|--|--|--|--|
| Source                | Date                                                                      | Rating  | Function                        | Pollutant | Standard      | Control Technology                                             |  |  |  |  |  |
|                       |                                                                           |         |                                 | NOx       | 0.15 g/bhp-hr | Three-Way Catalytic Converter and Air/Fuel Ratio Controller    |  |  |  |  |  |
| SCAQMD<br>(ID 359876) | 10/2/1999                                                                 | 750 BHP | Emergency Flood Control<br>Pump | СО        | 0.6 g/bhp-hr  | Three-Way Catalytic Converter and<br>Air/Fuel Ratio Controller |  |  |  |  |  |
|                       |                                                                           |         |                                 | VOC       | 0.15 g/bhp-hr | Three-Way Catalytic Converter and Air/Fuel Ratio Controller    |  |  |  |  |  |

# **Attachment C**

**SMAQMD BACT Determination #208 & 209** 

## **EXPIRED**

CATEGORY Type: IC ENGINE SPARK - STANDBY

BACT Category: MINOR SOURCE

BACT Determination Number: 208 BACT Determination Date: 12/28/2018

**Equipment Information** 

**Permit Number:** N/A -- Generic BACT Determination **Equipment Description:** IC ENGINE STANDBY

Unit Size/Rating/Capacity: < 500 BHP

**Equipment Location:** 

# **BACT Determination Information**

**District Contact:** Jeffrey Quok Phone No.: 916-874-4863 email: jquok@airquality.org See Description Standard: **ROCs** Lean burn: 206 ppmv @ 15% O2 as methane (1.0 g/bhp-hr), Rich burn: 60 ppmv @ 15% O2 as Technology methane (0.29 g/hp-hr) **Description:** Achieved in Practice Basis: See Description Standard: **NOx** Lean burn: 1.0 g/hp-hr, Rich burn: 25 ppmvd @ 15 O2 (0.44 g/hp-hr) OR 96% weight reduction Technology Description: Basis: Achieved in Practice Natural gas fuel or equivalent fuel Standard: SOx Technology Description: Achieved in Practice Basis: Natural gas fuel or equivalent fuel Standard: **PM10** Technology Description: Achieved in Practice Basis: Natural gas fuel or equivalent fuel Standard: PM2.5 Technology Description: Achieved in Practice Basis: 2.0 g/hp-hr Standard: CO Technology Description: Achieved in Practice Basis: Standard: LEAD Technology Description: Basis:

Comments: T-BACT is equivalent to BACT for VOC. This BACT was last reviewed on 12/28/2018, and amended on 8/9/2019.

Printed: 2/4/2021

# **EXPIRED**

CATEGORY Type: IC ENGINE SPARK - STANDBY

BACT Category: MINOR SOURCE

BACT Determination Number: 209 BACT Determination Date: 12/28/2018

**Equipment Information** 

**Permit Number:** N/A -- Generic BACT Determination **Equipment Description:** IC ENGINE STANDBY

Unit Size/Rating/Capacity: ≥ 500 BHP

**Equipment Location:** 

# **BACT Determination Information**

| District                                          | Contact: Jeffrey           | Quok Phone No.: 916-874-4863 email: jquok@airquality.org                                                                            |  |  |
|---------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ROCs                                              | Standard:                  | See Description                                                                                                                     |  |  |
|                                                   | Technology<br>Description: | Lean burn: 206 ppmv @ 15% O2 as methane (1.0 g/bhp-hr), Rich burn: 60 ppmv @ 15% O2 as methane (0.29 g/hp-hr)  Achieved in Practice |  |  |
|                                                   | Basis:                     |                                                                                                                                     |  |  |
| NOx                                               | Standard:                  | See Description                                                                                                                     |  |  |
|                                                   | Technology<br>Description: | Lean burn: 0.5 g/hp-hr, Rich burn: 25 ppmvd @ 15% O2 (0.44 g/hp-hr) OR 96% weight reduction                                         |  |  |
|                                                   | Basis:                     | Achieved in Practice                                                                                                                |  |  |
| SOx                                               | Standard:                  | Natural gas fuel or equivalent fuel                                                                                                 |  |  |
|                                                   | Technology<br>Description: |                                                                                                                                     |  |  |
| Basis: Achieved in Practice                       |                            | Achieved in Practice                                                                                                                |  |  |
| PM10 Standard: 0.0099 lb/MMBtu                    |                            | 0.0099 lb/MMBtu                                                                                                                     |  |  |
|                                                   | Technology Description:    |                                                                                                                                     |  |  |
|                                                   | Basis:                     | Achieved in Practice                                                                                                                |  |  |
| PM2.5                                             | Standard:                  | 0.0099 lb/MMBtu                                                                                                                     |  |  |
| Technology Description:  Achieved in Practice     |                            |                                                                                                                                     |  |  |
|                                                   |                            | Achieved in Practice                                                                                                                |  |  |
| CO Standard: 1.5 g/bhp-hr Technology Description: |                            | 1.5 g/bhp-hr                                                                                                                        |  |  |
|                                                   |                            |                                                                                                                                     |  |  |
|                                                   | Basis:                     | Achieved in Practice                                                                                                                |  |  |
| LEAD                                              | Standard:                  |                                                                                                                                     |  |  |
| Technology Description:                           |                            |                                                                                                                                     |  |  |
|                                                   | Basis:                     |                                                                                                                                     |  |  |

Comments: T-BACT is equivalent to BACT for VOC. This BACT was last reviewed on 12/28/2018, and amended on 8/9/2019.

Printed: 2/4/2021



# ADDENDUM TO BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION

|                                     | <b>DETERMINATION NO.:</b>                      | 208 & 209         |
|-------------------------------------|------------------------------------------------|-------------------|
|                                     | DATE:                                          | July 8, 2019      |
|                                     | ENGINEER:                                      | Jeffrey Quok      |
| Category/General Equip Description: | Internal Combustion (I.C.) E                   | ngine             |
| Equipment Specific Description:     | I.C. Engine Spark – Standby (Excluding Biogas) | , Gaseous-fueled  |
|                                     | Engines < 500 BHP (BACT #                      | <b>#208</b> )     |
| Equipment Size/Rating:              | Engines ≥ 500 BHP (BACT #                      | <del>‡</del> 209) |
| Previous BACT Det. No.:             | No. 122 & 123                                  |                   |

This BACT determination addendum will update BACT determinations #208 & #209 to update VOC emission standards that were based on SJVAPCD's BACT Guideline 3.1.5. This update will change the lean burn VOC emissions standard from 86 ppmv at 15%  $O_2$  to 206 ppmv at 15%  $O_2$  and add a rich burn VOC concentration standard of 60 ppmv at 15%  $O_2$  to the original standard of 0.29 g/hp-hr.

SJVAPCD's VOC emission standard for lean burn engines was originally based on the EPA NSPS JJJJ VOC standard of 86 ppmv or 1.0 g/hp-hr (above 130 HP). SJVAPCD discovered that the NSPS standard is referenced as propane. SJVAPCD updated their BACT guideline to reference methane to be consistent with their rules. This change in reference switched the standard from 86 ppmv @ 15%  $O_2$  (measured as propane) to 206 ppmv @ 15%  $O_2$  (measured as methane). SJVAPCD also added a concentration standard of 60 ppmv at 15%  $O_2$  (measured as methane) to the original standard of 0.29 g/hp-hr to be consistent with the lean burn VOC Standard.

# **BACT/T-BACT ANALYSIS**

# A. ACHIEVED IN PRACTICE (Rule 202, §205.1a):

The following control technologies are currently employed as BACT/T-BACT for gaseous-fueled and propane/LPG standby engines by the following agencies and air pollution control districts:

|                                       | BACT Source: SJVUAPCD BACT Guideline 3.1.5 – Emergency Gas-Fired IC Engine (7/16/18) |                                                                                                                                                                                                              |  |
|---------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                       | Emergency Gas-Fired IC Engine                                                        |                                                                                                                                                                                                              |  |
|                                       |                                                                                      | Lean Burn: 206 ppmv @ 15% O <sub>2</sub> as methane (1.0 g/bhp-hr)                                                                                                                                           |  |
|                                       | VOC                                                                                  | Rich Burn: 60 ppmv @ 15% O <sub>2</sub> as methane (0.29 g/hp-hr)                                                                                                                                            |  |
| San Joaquin<br>Valley Unified<br>APCD | NOx                                                                                  | <u>Lean Burn &lt; 500 BHP</u> : 1.0 g/bhp-hr<br><u>Lean Burn ≥ 500 BHP</u> : 0.5 g/bhp-hr<br><u>Rich Burn</u> : 25 ppmvd @ 15% O <sub>2</sub> (0.44 g/bhp-hr)                                                |  |
|                                       | SOx                                                                                  | Natural gas, LPG, or Propane fuel                                                                                                                                                                            |  |
|                                       | PM10                                                                                 | Natural gas, LPG, or Propane fuel                                                                                                                                                                            |  |
|                                       | PM2.5                                                                                | No Standard                                                                                                                                                                                                  |  |
|                                       | СО                                                                                   | 2.0 g/bhp-hr                                                                                                                                                                                                 |  |
|                                       | RULE R<br>Rule 470                                                                   | The no T-BACT standards published in the clearinghouse for this category.  EQUIREMENTS:  D2 - Internal Combustion Engines (Amended 11/14/13)  Engines are exempt from the emission limitations of this rule. |  |

## C. SELECTION OF BACT/T-BACT:

Based on the above analysis, BACT for VOC, NOx, SOx, PM10, and CO will remain at what is currently achieved in practice and BACT for PM2.5 will be set to be the same as for PM10.

Volatile hazardous air pollutants (VHAP) are the primary driver for health risks associated with gaseous fueled engines. VHAPs are emitted as VOC, and the same control technologies that control VOC also control VHAPs. Therefore, the BACT for VOC and T-BACT for VHAPs are the same.

| Table 1: BACT #208 FOR SPARK IGNITED I.C. ENGINES, STANDBY, GASEOUS-<br>FUELED (EXCLUDING BIOGAS) < 500 BHP |                                                                                                                                     |                                      |  |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| Pollutant                                                                                                   | Standard                                                                                                                            | Source                               |  |
| voc                                                                                                         | Lean Burn 206 ppmv @ 15% O <sub>2</sub> as methane (1.0 g/bhp-hr)  Rich Burn 60 ppmv @ 15% O <sub>2</sub> as methane (0.29 g/hp-hr) | SJVAPCD                              |  |
| NOx                                                                                                         | Lean-Burn: 1.0 g/bhp-hr  Rich Burn: 25 ppmvd @ 15 O <sub>2</sub> (0.44 g/hp-hr) OR 96% weight reduction                             | SMAQMD & SJVAPCD                     |  |
| SOx                                                                                                         | Natural gas fuel or equivalent fuel                                                                                                 | SMAQMD, SCAQMD, SJVUAPCD, and BAAQMD |  |
| PM10                                                                                                        | Natural gas fuel or equivalent fuel                                                                                                 | SMAQMD, SCAQMD, SJVUAPCD, and BAAQMD |  |
| PM2.5                                                                                                       | Natural gas fuel or equivalent fuel                                                                                                 | SMAQMD, SCAQMD, SJVUAPCD, and BAAQMD |  |
| со                                                                                                          | 2.0 g/bhp-hr                                                                                                                        | SMAQMD, SCAQMD, SJVAPCD              |  |

| Table 2:            | Table 2: T-BACT #208 FOR SPARK IGNITED I.C. ENGINES, STANDBY, GASEOUS-<br>FUELED (EXCLUDING BIOGAS) < 500 BHP                       |         |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| Pollutant           | Standard                                                                                                                            | Source  |  |
| VHAP <sup>(A)</sup> | Lean Burn 206 ppmv @ 15% O <sub>2</sub> as methane (1.0 g/bhp-hr)  Rich Burn 60 ppmv @ 15% O <sub>2</sub> as methane (0.29 g/hp-hr) | SJVAPCD |  |

<sup>(</sup>A) A full list of the volatile hazardous air pollutants (VHAP) from natural gas combustion can be found in AP-42, Section 3.2 Natural Gas-fired Reciprocating Engines, Tables 3.2-1, 3.2-2, and 3.2-3.

| Table 3: BACT #209 FOR SPARK IGNITED I.C. ENGINES, STANDBY, GASEOUS-<br>FUELED (EXCLUDING BIOGAS) ≥ 500 BHP |                                                                                                                                     |                            |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Pollutant                                                                                                   | Standard                                                                                                                            | Source                     |
| VOC                                                                                                         | Lean Burn 206 ppmv @ 15% O <sub>2</sub> as methane (1.0 g/bhp-hr)  Rich Burn 60 ppmv @ 15% O <sub>2</sub> as methane (0.29 g/hp-hr) | SJVAPCD                    |
| NOx                                                                                                         | Lean-Burn: 0.5 g/bhp-hr  Rich Burn: 25 ppmvd @ 15 O <sub>2</sub> (0.44 g/hp-hr) OR 96% weight reduction                             | SMAQMD &<br>SJVAPCD        |
| SOx                                                                                                         | Natural gas fuel or equivalent fuel                                                                                                 | BAAQMD                     |
| PM10                                                                                                        | 0.0099 lb/MMBtu                                                                                                                     | SMAQMD &<br>EPA (MI-00401) |
| PM2.5                                                                                                       | 0.0099 lb/MMBtu                                                                                                                     | SMAQMD &<br>EPA (MI-00401) |
| СО                                                                                                          | 1.5 g/p-hr                                                                                                                          | SMAQMD                     |

| Table 4:            | Table 4: T-BACT #209 FOR SPARK IGNITED I.C. ENGINES, STANDBY, GASEOUS-<br>FUELED (EXCLUDING BIOGAS) ≥ 500 BHP                       |         |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| Pollutant Standard  |                                                                                                                                     | Source  |  |
| VHAP <sup>(A)</sup> | Lean Burn 206 ppmv @ 15% O <sub>2</sub> as methane (1.0 g/bhp-hr)  Rich Burn 60 ppmv @ 15% O <sub>2</sub> as methane (0.29 g/hp-hr) | SJVAPCD |  |

<sup>(</sup>A) A full list of the volatile hazardous air pollutants (VHAP) from natural gas combustion can be found in AP-42, Section 3.2 Natural Gas-fired Reciprocating Engines, Tables 3.2-1, 3.2-2, and 3.2-3.

| APPROVED BY: Set F Mind | DATE: | 8-9-19 |
|-------------------------|-------|--------|
|-------------------------|-------|--------|

# Attachment A SJVAPCD BACT Determination and Email Contact

# San Joaquin Valley Unified Air Pollution Control District

# Best Available Control Technology (BACT) Guideline 3.1.5\*

Last Update: 07/16/2018

# **Emergency Gas-Fired IC Engine**

| Pollutant | Achieved in Practice or<br>contained in the SIP                     | Technologically<br>Feasible | Alternate Basic<br>Equipment |
|-----------|---------------------------------------------------------------------|-----------------------------|------------------------------|
| VOC       | 1) LEAN BURN:<br>206 ppmv @ 15% O2 (1.0<br>g/bhp-hr)                |                             |                              |
|           | 2) RICH BURN:<br>60 ppmv @ 15% O2 (0.29<br>g/bhp-hr)                |                             |                              |
| SOx       | Natural Gas, LPG, or<br>Propane as fuel                             |                             |                              |
| PM10      | Natural Gas, LPG, or<br>Propane as fuel                             |                             |                              |
| NOx       | 1) LEAN BURN:<br>< 500 BHP: 1.0 g/bhp-hr<br>≥ 500 BHP: 0.5 g/bhp-hr |                             |                              |
|           | 2) RICH BURN:<br>25 ppmv @ 15% O2 (0.44<br>g/bhp-hr)                |                             |                              |
| со        | 2.0 g/bhp-hr                                                        |                             |                              |

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

\*This is a Summary Page for this Class of Source

### Jeffrey Quok

Matthew Baldwin From:

Sent: Tuesday, May 07, 2019 4:47 PM

To: Jeffrey Quok

FW: Question on BACT 3.1.5 Subject:

Categories: Red Category

Jeff,

Here's a summary of what Silvana Procopio told me regarding BACT 3.1.5.

The lean burn VOC BACT was based on EPA NSPS JJJJ. This standard is 86 ppmv or 1.0 g/hp-hr (above 130 HP). However, not stated is the reference pollutant. San Joaquin investigated and discovered that it was referenced as propane. San Joaquin then updated their standard to reference methane, which is consistent with their rules. The change in reference switched the standard from 86 ppmv @ 15% oxygen to 206 ppmv @ 15% Oxygen. Likewise, they added a concentration standard to be consistent with the Lean Burn VOC standard, which is why they updated the original standard (0.29 g/hphr) to reference a 60 ppmv @ 15% Oxygen. Silvana stated that this is also referenced as methane.

Matt Baldwin Sacramento Metropolitan AQMD (916) 874-4858

From: Silvana Procopio [mailto:Silvana.Procopio@valleyair.org]

Sent: Tuesday, May 07, 2019 1:28 PM

To: Matthew Baldwin < MBaldwin@airquality.org>

Cc: Leonard Scandura < Leonard.Scandura@valleyair.org>; Errol Villegas < errol.villegas@valleyair.org>

Subject: RE: Question on BACT 3.1.5

Hi Matt,

It was a pleasure speaking with you earlier. Let me know if you have any further questions regarding the BACT Guideline Determination 3.1.5.

Kind regards,

#### Silvana Procopio

Air Quality Engineer San Joaquin Valley APCD 34946 Flyover Ct., Bakersfield, CA 93308 Ph.: 661.392.5606 www.vallevair.org



From: Leonard Scandura < Leonard. Scandura@valleyair.org >

Sent: Tuesday, May 7, 2019 11:55 AM

To: Errol Villegas < errol.villegas@valleyair.org>
Cc: Silvana Procopio < Silvana.Procopio@valleyair.org>

Subject: RE: Question on BACT 3.1.5

Errol - Well give him a call back.

Thanks

Leonard

From: Errol Villegas <errol.villegas@valleyair.org>

Sent: Tuesday, May 7, 2019 10:20 AM

To: Leonard Scandura < Leonard.Scandura@valleyair.org >

Subject: FW: Question on BACT 3.1.5

Leonard – It looks like Sylvana did this proactive BACT update... Can you please assist with answering this question from Sac Metro?

Thanks, Errol

From: Matthew Baldwin < MBaldwin@airquality.org>

Sent: Tuesday, May 7, 2019 9:34 AM

To: Errol Villegas < errol.villegas@valleyair.org>

Subject: Question on BACT 3.1.5

Errol,

Just had a question regarding one of your BACT determinations. During a review for a permit application, I noticed that the VOC standard for BACT 3.1.5 (Emergency Gas-fired engine) had been corrected or changed. When we did our BACT determination for this category, we referenced the following standards:

1) Lean burn: 86 ppmv @ 15% O2 (0.4 g/bhp-hr) 2) Rich burn: 0.29 g/hp-hr (SMAQMD BACT Determination 208 & 209)

When looking more recently at the same BACT, it looks like the standard changed to:

1) Lean Burn: 206 ppmv @ 15% O2 (1.0 g/bhp-hr) 2) Rich Burn: 60 ppmv @ 15% O2 (0.29 g/bhp-hr)

Could you please clarify? We just want to be sure we have referenced the correct standards, and update our BACT if necessary.

Thanks,

Matt Baldwin
Air Quality Engineer
Sacramento Metropolitan Air Quality Management District
777 12<sup>th</sup> Street, 3<sup>rd</sup> Floor | Sacramento, CA 95814
Tel: (916) 874-4858 | Front Desk: (916) 874-4800
www.airquality.org

# Attachment B Original BACTs #208 & #209 (12/18/2018)

| Λ. | $\sim$      | ГП | • | ᆮ |
|----|-------------|----|---|---|
| A  | <b>ا</b> حا |    | v | ᆮ |

CATEGORY: IC ENGINE SPARK - STANDBY

BACT Size: Minor Source BACT IC ENGINE STANDBY

BACT Determination Number: 208 BACT Determination Date: 12/18/2018

**Equipment Information** 

**Permit Number:** N/A -- Generic BACT Determination **Equipment Description:** IC ENGINE STANDBY

Unit Size/Rating/Capacity: < 500 BHP

**Equipment Location:** 

### **BACT Determination Information**

|       | •                          |                                                                                            |
|-------|----------------------------|--------------------------------------------------------------------------------------------|
| ROCs  | Standard:                  | See Description                                                                            |
|       | Technology<br>Description: | Lean burn: 86 ppmv @ 15% O2 (0.4 g/bhp-hr), Rich burn: 0.29 g/hp-hr                        |
|       | Basis:                     | Achieved in Practice                                                                       |
| NOx   | Standard:                  | See Description                                                                            |
| litox | Technology<br>Description: | Lean burn: 1.0 g/hp-hr, Rich burn: 25 ppmvd @ 15 O2 (0.44 g/hp-hr) OR 96% weight reduction |
|       | Basis:                     | Achieved in Practice                                                                       |
| SOx   | Standard:                  | Natural gas fuel or equivalent fuel                                                        |
|       | Technology<br>Description: |                                                                                            |
|       | Basis:                     | Achieved in Practice                                                                       |
| PM10  | Standard:                  | Natural gas fuel or equivalent fuel                                                        |
|       | Technology Description:    |                                                                                            |
|       | Basis:                     | Achieved in Practice                                                                       |
| PM2.5 | Standard:                  | Natural gas fuel or equivalent fuel                                                        |
|       | Technology<br>Description: |                                                                                            |
|       | Basis:                     | Achieved in Practice                                                                       |
| СО    | Standard:                  | 2.0 g/hp-hr                                                                                |
|       | Technology Description:    |                                                                                            |
|       | Basis:                     | Achieved in Practice                                                                       |
| LEAD  | Standard:                  |                                                                                            |
|       | Technology<br>Description: |                                                                                            |
|       | Basis:                     |                                                                                            |
|       |                            | L                                                                                          |

**Comments:** T-BACT is equivalent to BACT for VOC.

**District Contact:** 

Printed: 12/18/2018

|   | $\sim$ | FΙΛ | • | _ |
|---|--------|-----|---|---|
| A | G I    | ш   | v | ᆮ |

CATEGORY: IC ENGINE SPARK - STANDBY

BACT Size: Minor Source BACT IC ENGINE STANDBY

BACT Determination Number: 209 BACT Determination Date: 12/18/2018

**Equipment Information** 

**Permit Number:** N/A -- Generic BACT Determination **Equipment Description:** IC ENGINE STANDBY

Unit Size/Rating/Capacity: ≥ 500 BHP

**Equipment Location:** 

### **BACT Determination Information**

| ROCs  | Standard:                  | See Description                                                                            |
|-------|----------------------------|--------------------------------------------------------------------------------------------|
|       | Technology<br>Description: | Lean burn: 86 ppmv @ 15% O2 (0.4 g/bhp-hr), Rich burn: 0.29 g/hp-hr                        |
|       | Basis:                     | Achieved in Practice                                                                       |
| NOx   | Standard:                  | See Description                                                                            |
| l l l | Technology<br>Description: | Lean burn: 0.5 g/hp-hr, Rich burn: 25 ppmvd @ 15 O2 (0.44 g/hp-hr) OR 96% weight reduction |
|       | Basis:                     | Achieved in Practice                                                                       |
| SOx   | Standard:                  | Natural gas fuel or equivalent fuel                                                        |
| OOX   | Technology<br>Description: |                                                                                            |
|       | Basis:                     | Achieved in Practice                                                                       |
| PM10  | Standard:                  | 0.0099 lb/MMBtu                                                                            |
|       | Technology<br>Description: |                                                                                            |
|       | Basis:                     | Achieved in Practice                                                                       |
| PM2.5 | Standard:                  | 0.0099 lb/MMBtu                                                                            |
|       | Technology<br>Description: |                                                                                            |
|       | Basis:                     | Achieved in Practice                                                                       |
| СО    | Standard:                  | 1.5 g/bhp-hr                                                                               |
|       | Technology<br>Description: |                                                                                            |
|       | Basis:                     | Achieved in Practice                                                                       |
| LEAD  | Standard:                  |                                                                                            |
|       | Technology<br>Description: |                                                                                            |
|       | Basis:                     |                                                                                            |

**Comments:** T-BACT is equivalent to BACT for VOC.

**District Contact:** 

Printed: 12/18/2018



### BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION

|                                     | <b>DETERMINATION NO.:</b>                                     | 208 & 209         |  |
|-------------------------------------|---------------------------------------------------------------|-------------------|--|
|                                     | DATE:                                                         | December 18, 2018 |  |
|                                     | ENGINEER:                                                     | Jeffrey Quok      |  |
| Category/General Equip Description: | Internal Combustion (I.C.) En                                 | ngine             |  |
| Equipment Specific Description:     | I.C. Engine Spark – Standby, Gaseous-fuele (Excluding Biogas) |                   |  |
|                                     | Engines < 500 BHP (BACT #                                     | 208)              |  |
| Equipment Size/Rating:              | Engines ≥ 500 BHP (BACT #                                     | 209)              |  |
| Previous BACT Det. No.:             | No. 122 & 123                                                 |                   |  |

This BACT determination will update the following determinations:

#122 & #123 which were made on August 5, 2016 for I.C. Engine Spark - Standby, < 500 BHP and  $\geq$  500 BHP

#### **BACT/T-BACT ANALYSIS**

### A. ACHIEVED IN PRACTICE (Rule 202, §205.1a):

The following control technologies are currently employed as BACT/T-BACT for gaseous-fueled and propane/LPG standby engines by the following agencies and air pollution control districts:

Note: Tables 3.2-1, 3.2-2, and 3.2-3 of AP-42 list benzene, formaldehyde, PAHs, naphthalene, acetaldehyde, acrolein, propylene, toluene, xylenes, ethyl benzene, and hexane as the primary drivers for health risks associated with natural gas combustion. These VHAPs/organic compounds are emitted as VOC and the same control technologies that control VOCs also control the listed VHAPs.

| District/Agency | Best Av                                                                                                                                                                                                                                                                                             | Best Available Control Technology (BACT)/Requirements                                                                                                                                                                                                                                                                                                                         |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                 | BACT Source: EPA RACT/BACT/LAER Clearinghouse (See Attachment A) RBLC ID: N/A IA-0102 (VOC) & CA-1225 (NOx, PM10, & CO)                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                 | For star<br>BHP                                                                                                                                                                                                                                                                                     | ndby natural gas (includes propane & LPG) units with a rating of < 500                                                                                                                                                                                                                                                                                                        |  |  |  |
|                 | VOC                                                                                                                                                                                                                                                                                                 | 0.66 lb/hr (IA-0102) <sup>(A)</sup>                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                 | NOx                                                                                                                                                                                                                                                                                                 | 0.78 lb/hr (CA-1225) <sup>(B)</sup>                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                 | SOx                                                                                                                                                                                                                                                                                                 | N/A – No BACT determinations found in the < 500 BHP range                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                 | PM10                                                                                                                                                                                                                                                                                                | 0.216 lb/hr (CA-1225) <sup>(B)</sup>                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                 | PM2.5                                                                                                                                                                                                                                                                                               | N/A – No BACT determinations found in the < 500 BHP range                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                 | СО                                                                                                                                                                                                                                                                                                  | 4.0 g/hp-hr (CA-1225) <sup>(B)</sup>                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                 | <ul> <li>(A) IA-0102 was a BACT Determination for a 225 KW engine. This determination did not identify if the engine was lean or rich burn.</li> <li>(B) CA-1225 was a BACT Determination for a 256 BHP engine. This determination did not identify if the engine was lean or rich burn.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                 |                                                                                                                                                                                                                                                                                                     | EPA RACT/BACT/LAER Clearinghouse (See Attachment A) D: OK-0153 (VOC, NOx, & CO), IN-0167 (SOx), & MI-0401 (PM10 & PM2.5)                                                                                                                                                                                                                                                      |  |  |  |
| US EPA          | For star                                                                                                                                                                                                                                                                                            | ndby natural gas (includes propane & LPG) units with a rating of ≥ 500 BHP                                                                                                                                                                                                                                                                                                    |  |  |  |
|                 | VOC                                                                                                                                                                                                                                                                                                 | 0.44 g/hp-hr (OK-0153) <sup>(A)</sup>                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                 | NOx                                                                                                                                                                                                                                                                                                 | 0.5 g/hp-hr (OK-0153) <sup>(A)</sup>                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                 | SOx                                                                                                                                                                                                                                                                                                 | 0.0015 g/kwh (0.0011 g/hp-hr) (IN-0167) <sup>(B)</sup>                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                 | PM10                                                                                                                                                                                                                                                                                                | 0.0099 lb/MMBtu (MI-0401) <sup>(C)</sup>                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                 | PM2.5                                                                                                                                                                                                                                                                                               | 0.0099 lb/MMBtu (MI-0401) <sup>(C)</sup>                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                 | СО                                                                                                                                                                                                                                                                                                  | 0.43 g/hp-hr (OK-0153) <sup>(A)</sup>                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                 | did (B) IN-0 did (C) MI-0                                                                                                                                                                                                                                                                           | 0153 was a BACT Determination for a 2,889 BHP engine. This determination not identify if the engine was lean or rich burn. 0167 was a BACT Determination for a 620 BHP engine. This determination not identify if the engine was lean or rich burn. 0401 was a BACT Determination for a 1,200 kW engine. This determination not identify if the engine was lean or rich burn. |  |  |  |
|                 |                                                                                                                                                                                                                                                                                                     | e no T-BACT standards published in the clearinghouse for this category.                                                                                                                                                                                                                                                                                                       |  |  |  |
|                 | 40 CFR<br>Ignition I<br>new stat                                                                                                                                                                                                                                                                    | Part 60 Subpart JJJJ – Standards of Performance for Stationary Spark nternal Combustion Engines: This regulation applies to owners/operators of tionary spark ignition engines that commenced construction after June 12, 0 CFR §60.4230(a)(4)]                                                                                                                               |  |  |  |

| District/Agency                                                                                                      | Best Available Control Technology (BACT)/Requirements                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                                                                                                      |                     |                            |                        |                    |  |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|------------------------|--------------------|--|
|                                                                                                                      | 40 CFR §60.4233(d) & §60.4233(e) Owners and operators of stationary SI ICE with a maximum engine power great than 19 KW (25 BHP) must comply with the emission standards of Table 1 to the subpart for their emergency stationary SI ICE (applies to both lean and rich but engines).                                                                                                           |                                                                       |                                                                                                                      |                     |                            |                        |                    |  |
|                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                 | 40 CF                                                                 | R Subpart JJJJ                                                                                                       | Table 1: Emis       | sion Standa                | rds (g/kW-h            | r)                 |  |
|                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                                                                                                                      |                     | Emis                       | sion Standa            | rds <sup>(A)</sup> |  |
|                                                                                                                      | Engine<br>and                                                                                                                                                                                                                                                                                                                                                                                   | e Type<br>Fuel                                                        | Maximum<br>Engine Power                                                                                              | Manufacture<br>Date | (ррі                       | g/bhp-hr<br>mvd at 15% | O <sub>2</sub> )   |  |
| US EPA                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                                                                                                                      |                     | NOx                        | СО                     | VOC(C)             |  |
|                                                                                                                      | Emerge                                                                                                                                                                                                                                                                                                                                                                                          | ncy <sup>(D)</sup>                                                    | 25 <bhp<130< td=""><td>1/1/2009</td><td>10<sup>(B)</sup><br/>(N/A)</td><td>387<br/>(N/A)</td><td>N/A</td></bhp<130<> | 1/1/2009            | 10 <sup>(B)</sup><br>(N/A) | 387<br>(N/A)           | N/A                |  |
|                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       | BHP≥130                                                                                                              |                     | 2.0<br>(160)               | 4.0<br>(540)           | 1.0<br>(86)        |  |
|                                                                                                                      | comply with the emission standards in units of either g/bhp-hr or ppmvd at 15% O2  (B) The emission standards applicable to emergency engines between 25 BHP and 130 BHP are in terms of NOx + HC.  (C) For purposes of this subpart, when calculating emissions of VOC compounds, emissions of formaldehyde should not be included.  (D) Applies to both lean and rich burn emergency engines. |                                                                       |                                                                                                                      |                     |                            |                        |                    |  |
|                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       | CT Clearinghous                                                                                                      |                     |                            | ment B)                |                    |  |
|                                                                                                                      | VOC                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                     | rk ignition natura                                                                                                   |                     |                            | rotio contro           | llor               |  |
|                                                                                                                      | NOx                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                                                                                                      |                     |                            |                        |                    |  |
| Air Resources                                                                                                        | SOx                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | No BACT determ                                                                                                       | •                   |                            |                        |                    |  |
| Board (ARB)                                                                                                          | PM10                                                                                                                                                                                                                                                                                                                                                                                            | N/A - N                                                               | No BACT determ                                                                                                       | inations found      |                            |                        |                    |  |
|                                                                                                                      | PM2.5                                                                                                                                                                                                                                                                                                                                                                                           | N/A – N                                                               | No BACT determ                                                                                                       | inations found      |                            |                        |                    |  |
|                                                                                                                      | СО                                                                                                                                                                                                                                                                                                                                                                                              | 2.0 g/bhp-hr, 3-way catalyst converter with air/fuel ratio controller |                                                                                                                      |                     |                            |                        | oller              |  |
| (A) This BACT determination was for a 1334 bhp engine. The determination specify if the engine is rich or lean burn. |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                                                                                                                      |                     | ation doesn't              |                        |                    |  |

| District/Agency              | Best Av                                                                                | ailable Control Technology (BACT)/Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Air Resources<br>Board (ARB) | T-BACT There are no T-BACT standards published in the clearinghouse for this category. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                              | None                                                                                   | EQUIREMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                              | Engines This doc (RACT) VOC, a engines. exempt                                         | CARB RACT/BARCT Guidelines for Stationary Spark-Ignited Internal Combustion Ingines (11/2001)  his document presents the determination of reasonably available control technology (RACT) and best available retrofit control technology (BARCT) for controlling NOx, (OC, and CO from stationary, spark-ignited reciprocating internal combustion ngines. On page IV-14 of the document, emergency standby engines are listed as xempt from the recommended emission limits. Therefore, this guideline is not pplicable to this BACT determination. |  |  |  |  |  |
|                              | BACT<br>Source:                                                                        | SMAQMD BACT Clearinghouse, BACT Determination #122 & #123 (8/5/16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                              | For standby spark ignition units with a rating of < 500 BHP                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                              | VOC                                                                                    | Lean Burn 1.0 g/bhp-hr Rich Burn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                              |                                                                                        | 50% Control efficiency, 3-way catalyst with air-to-fuel ratio controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                              | NOx                                                                                    | Lean-Burn: 1.0 g/bhp-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| SMAQMD                       |                                                                                        | Rich Burn:<br>25 ppmvd @ 15% O <sub>2</sub> OR 96% weight reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                              | SOx                                                                                    | Natural gas or equivalent fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                              | PM10                                                                                   | Natural gas or equivalent fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                              | PM2.5                                                                                  | Natural gas or equivalent fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                              | СО                                                                                     | 2.0 g/bhp-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                              |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |

| District/Agency | Best Available Control Technology (BACT)/Requirements                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|-----------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                 |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                 | For star                                                                          | dby spark ignition units with a rating of ≥ 500 BHP <sup>(A)</sup>                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                 | voc                                                                               | Lean Burn 0.6 g/bhp-hr  Rich Burn 50% Control efficiency, 3-way catalyst with air-to-fuel ratio controller                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 | NOx                                                                               | Lean-Burn: 0.5 g/bhp-hr  Rich-Burn: 25 ppmvd @ 15% O <sub>2</sub> OR 96% weight reduction                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                 | SOx                                                                               | Natural gas or equivalent fuel                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                 | PM10                                                                              | 0.0099 lb/MMBtu                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                 | PM2.5                                                                             | 0.0099 lb/MMBtu                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                 | СО                                                                                | 1.5 g/p-hr                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| SMAQMD          | T-BACT Source: SMAQMD BACT Clearinghouse, BACT Determination #122 & #123 (8/5/16) |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                 | For standby spark ignition units with a rating of < 500 BHP <sup>(A)</sup>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                 | VHAP <sup>(A)</sup>                                                               | 1.0 g/bhp-hr                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                 | coml                                                                              | Il list of the volatile hazardous air pollutants (VHAP) from natural gas bustion can be found in AP-42, Section 3.2 Natural Gas-fired Reciprocating nes, Tables 3.2-1, 3.2-2, and 3.2-3.                                                                                                                                                                                                                                                         |  |  |
|                 | For star                                                                          | dby spark ignition units with a rating of ≥ 500 BHP <sup>(A)</sup>                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                 | VHAP <sup>(A)</sup>                                                               | 0.6 g/bhp-hr                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                 | coml                                                                              | Il list of the volatile hazardous air pollutants (VHAP) from natural gas bustion can be found in AP-42, Section 3.2 Natural Gas-fired Reciprocating nes, Tables 3.2-1, 3.2-2, and 3.2-3.                                                                                                                                                                                                                                                         |  |  |
|                 | Rule 412<br>Sources<br>This rule<br>BHP loca<br>operation<br>exempt 1             | EQUIREMENTS:  2 – Stationary Internal Combustion Engines Located at Major Stationary of NOx (Adopted 6/1/1995)  applies to any stationary internal combustion engine rated at more than 50 ated at a major stationary source of NOx. Section 110 of this rule states that of stationary internal combustion engines used for emergency standby are from the standards of this rule. Therefore, this rule is not applicable to this etermination. |  |  |

| Best Avai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lable Control Te                                                                                                                                                                                        | chnology (B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACT)/Requir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| BACT Source: SCAQMD BACT Guidelines for Non-Major Polluting Facilities, page 74 (2/2/18)                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |  |
| BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CT Guideline, I.C.                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ationary, Emer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gency                                                                                                                                                       |  |
| Rating/Siz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | re VOC                                                                                                                                                                                                  | NOx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SOx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | СО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PM                                                                                                                                                          |  |
| < 130 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P 1.5 g/bhp-<br>hr                                                                                                                                                                                      | 1.5 g/bhp-<br>hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Use of clean fuels (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0 g/bhp-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Use of clean fuels (A)                                                                                                                                      |  |
| ≥ 130 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P 1.0 g/bhp-<br>hr                                                                                                                                                                                      | 1.5 g/bhp-<br>hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Use of clean fuels (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0 g/bhp-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Use of clean fuels (A)                                                                                                                                      |  |
| <ul> <li>(A) Clean fuel is defined as one that produces air emissions equivalent to or lower than natural gas for NOx, SOx, ROG, and fine particulate matter (PM10).</li> <li>T-BACT         There are no T-BACT standards published in the clearinghouse for this category.     </li> <li>RULE REQUIREMENTS:         Reg IX, Rule 1110.2 – Emissions from Gaseous- and Liquid-Fueled Engines (Amended 6/3/16)     </li> <li>Emergency standby engines are exempt from this Rule.</li> </ul> |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |  |
| BACT Source: SJVUAPCD BACT Guideline 3.1.5 – Emergency Gas-Fired IC Engine (7/16/18)  Emergency Gas-Fired IC engine  Lean Burn: 86 ppmv @ 15% O2 (0.4 g/bhp-hr)                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |  |
| NOx L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>Lean Burn &lt; 500 BHP</u> : 1.0 g/bhp-hr<br><u>Lean Burn ≥ 500 BHP</u> : 0.5 g/bhp-hr                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |  |
| SOx N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Natural gas, LPG,                                                                                                                                                                                       | or Propane fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ıel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |  |
| PM10 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Natural gas, LPG,                                                                                                                                                                                       | or Propane fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ıel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |  |
| PM2.5 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No Standard                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |  |
| CO 2.0 g/bhp-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BACT Source: S (2/2/18)  BA  Rating/Siz  <130 H  ≥130 H  (A) Clean than n  T-BACT There are  RULE REC Reg IX, F (Amended Emergency  BACT Source: S. Guideline 3  Emergency  VOC  E  NOx  PM10 N PM2.5 N | BACT Source: SCAQMD BACT (2/2/18)  BACT Guideline, I.C.  Rating/Size VOC  < 130 HP 1.5 g/bhp-hr  (A) Clean fuel is defined as than natural gas for NO  T-BACT There are no T-BACT stand.  RULE REQUIREMENTS: Reg IX, Rule 1110.2 - E (Amended 6/3/16)  Emergency standby engines  BACT Source: SJVUAPCD BACT Guideline 3.1.5 - Emergence  Emergency Gas-Fired IC er  VOC  Lean Burn: 86 ppn Rich Burn: 0.29 g/l  Lean Burn < 500 E Lean Burn ≥ 500 E Lean Burn ≥ 500 E Rich Burn: 25 ppm  SOx Natural gas, LPG, PM2.5 No Standard | BACT Source: SCAQMD BACT Guidelines for (2/2/18)  BACT Guideline, I.C. Engine Spar — g/b Rating/Size VOC NOx  < 130 HP 1.5 g/bhp-hr 1.5 g/bhp-hr  (A) Clean fuel is defined as one that prod than natural gas for NOx, SOx, ROG  T-BACT There are no T-BACT standards published RULE REQUIREMENTS: Reg IX, Rule 1110.2 — Emissions from (Amended 6/3/16)  Emergency standby engines are exempt for the standards of the standard of the sta | BACT Source: SCAQMD BACT Guidelines for Non-Major (2/2/18)  BACT Guideline, I.C. Engine Spark Ignition, Stare g/bhp-hr  Rating/Size VOC NOX SOX  < 130 HP 1.5 g/bhp-hr 1.5 g/bhp-hr Use of clean fuels (A)  ≥ 130 HP 1.0 g/bhp-hr 1.5 g/bhp-hr (A)  (A) Clean fuel is defined as one that produces air emisthan natural gas for NOX, SOX, ROG, and fine part T-BACT  There are no T-BACT standards published in the clearing RULE REQUIREMENTS: Reg IX, Rule 1110.2 - Emissions from Gaseous-(Amended 6/3/16)  Emergency standby engines are exempt from this Rule BACT Source: SJVUAPCD BACT Guideline 3.1.5 - Emergency Gas-Fired IC Engine (7/12)  Emergency Gas-Fired IC engine  VOC  Lean Burn: 86 ppmv @ 15% O2 (0.4 g/bhp-hr Lean Burn ≥ 500 BHP: 1.0 g/bhp-hr Lean Burn ≥ 500 BHP: 0.5 g/bhp-hr Rich Burn: 25 ppmvd @ 15% O2 (0.44 g/bhp SOX Natural gas, LPG, or Propane fuel PM10 Natural gas, LPG, or Propane fuel PM2.5 No Standard | Source: SCAQMD BACT Guidelines for Non-Major Polluting Face (2/2/18)  BACT Guideline, I.C. Engine Spark Ignition, Stationary, Emery — g/bhp-hr  Rating/Size |  |

| District/Agency                                                                                                                                                                                            | Best Available Control Technology (BACT)/Requirements                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                                            |                                                                     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------|--|
| San Joaquin<br>Valley Unified<br>APCD                                                                                                                                                                      | T-BACT There are no T-BACT standards published in the clearinghouse for this category.  RULE REQUIREMENTS: Rule 4702 – Internal Combustion Engines (Amended 11/14/13)  Standby Engines are exempt from the emission limitations of this rule.                                                                                                                                                 |                                                       |                                                                            |                                                                     |  |
| BACT Source: NSR Requirements for BACT The engine BACT determinations listed in the SDAPCD Clearinghouse to standby engines.  T-BACT There are no T-BACT standards published in the clearinghouse for this |                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                                            |                                                                     |  |
|                                                                                                                                                                                                            | RULE REQUIREMENTS:  Regulation 4, Rule 69.4 – Stationary Reciprocating Internal Combustion Engines –  Reasonably Available Control Technology (7/30/03)  This rule applies to stationary I.C. Engines ≥ 50 BHP located at a stationary source which emits or has a potential to emit 50 tons per year or more of NOx.  Standby Engines are exempt from the emission limitations of this rule. |                                                       |                                                                            |                                                                     |  |
| San Diego<br>APCD                                                                                                                                                                                          | Regulation 4, Rule 69.4.1 – Stationary Reciprocating Internal Combustion Engines –  Best Available Retrofit Control Technology (11/15/00)  This rule applies to stationary I.C. Engines ≥ 50 BHP.                                                                                                                                                                                             |                                                       |                                                                            |                                                                     |  |
|                                                                                                                                                                                                            | New or i                                                                                                                                                                                                                                                                                                                                                                                      | eplacement rich-burn engine                           | s using fossil derived g                                                   | aseous fuel                                                         |  |
|                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                               | Published Value                                       | Conversion for<br>Naturally Aspirated<br>Engines (g/bhp-hr) <sup>(A)</sup> | Conversion for<br>Turbocharged<br>Engines (g/bhp-hr) <sup>(B)</sup> |  |
|                                                                                                                                                                                                            | VOC                                                                                                                                                                                                                                                                                                                                                                                           | 250 ppmvd @ 15% O <sub>2</sub>                        | 1.53                                                                       | 1.47                                                                |  |
|                                                                                                                                                                                                            | NOx                                                                                                                                                                                                                                                                                                                                                                                           | 25 ppmvd @ 15% O <sub>2</sub> OR 96% weight reduction | 0.44                                                                       | 0.42                                                                |  |
|                                                                                                                                                                                                            | SOx                                                                                                                                                                                                                                                                                                                                                                                           | No standard                                           | -                                                                          | -                                                                   |  |
|                                                                                                                                                                                                            | PM10                                                                                                                                                                                                                                                                                                                                                                                          | No standard                                           | -                                                                          | -                                                                   |  |
|                                                                                                                                                                                                            | PM2.5                                                                                                                                                                                                                                                                                                                                                                                         | No standard                                           | -                                                                          | -                                                                   |  |
|                                                                                                                                                                                                            | СО                                                                                                                                                                                                                                                                                                                                                                                            | 4,500 ppmvd @ 15% O <sub>2</sub>                      | 48.4                                                                       | 46.4                                                                |  |
|                                                                                                                                                                                                            | <ul> <li>(A) Based on Santa Barbara County APCD Piston IC Engine Technical Reference Document (11/1/02) emission factor conversions, Section II(B)(B7)(e)(vi).</li> <li>(B) Based on Santa Barbara County APCD Piston IC Engine Technical Reference Document (11/1/02) emission factor conversions, Section II(B)(B7)(e)(vii).</li> </ul>                                                     |                                                       |                                                                            |                                                                     |  |

| 2031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | allable Control Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Best Available Control Technology (BACT)/Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| No. 1 de la constanta de la co |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| New or i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | replacement lean-burn engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | es using gaseous fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Published Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conversion for<br>Naturally Aspirated<br>Engines (g/bhp-hr) <sup>(A)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conversion for<br>Turbocharged<br>Engines (g/bhp-hr) <sup>(B)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| VOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250 ppmvd @ 15% O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| NOx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65 ppmvd @ 15% O <sub>2</sub> OR 90% weight reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| SOx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| PM10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| PM2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,500 ppmvd @ 15% O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 46.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Doc<br>(B) Base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ument (11/1/02) emission fact<br>ed on <i>Santa Barbara County</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tor conversions, Section APCD Piston IC Engil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n II(B)(B7)(e)(vi).<br>ne Technical Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| BACT<br>Source: BAAQMD BACT<br>Guideline 96.3.4 (5/7/03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| IC Engine - Spark Ignition, Natural Gas Fired Emergency Engine ≥ 50 BHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| VOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1. 1.0 g/bhp-hr (Achieved in Practice)     2. Lean burn technology or equivalent (Achieved in Practice)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| NOx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0 g/bhp-hr (Achieved in Practice)     Lean burn technology or equivalent (Achieved in Practice)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| SOx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1. Natural Gas Fuel (Achieve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ed in Practice)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| PM10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1. Natural Gas Fuel (Achieve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ed in Practice)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| PM2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| СО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1. 2.75 g/bhp-hr (Achieved in Practice)     2. Lean burn technology or equivalent (Achieved in Practice)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| T-BACT There are no T-BACT standards published in the clearinghouse for this can be seen as a second standard specific or the clear standard specific or the can be seen as a second standard specific or the can be seen as a second standard specific or the clear standard specific or the clear standard specific or the clear specifi |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VOC  NOx  SOx  PM10  PM2.5  CO  (A) Base Doc  (B) Base Doc  (C) Base Doc | Published Value  VOC   250 ppmvd @ 15% O2    NOx   65 ppmvd @ 15% O2 OR 90% weight reduction  SOx   No standard    PM10   No standard    PM2.5   No standard    CO   4,500 ppmvd @ 15% O2    (A) Based on Santa Barbara County Document (11/1/02) emission fact (B) Based on Santa Barbara County Document (11/1/02) emission fact (B) Based on Santa Barbara County Document (11/1/02) emission fact (C)    BACT   Source: BAAQMD BACT    Guideline 96.3.4 (5/7/03)    IC Engine - Spark Ignition, Natural Gave (C)    VOC   1. 1.0 g/bhp-hr (Achieved in 2. Lean burn technology or 60 (C)    SOx   1. Natural Gas Fuel (Achieved PM10   1. Natural Gas Fuel (Achieved PM2.5   No Standard    CO   1. 2.75 g/bhp-hr (Achieved in 2. Lean burn technology or 60 (C)    T-BACT   There are no T-BACT standards published (C)    RULE REQUIREMENTS:    Reg 9, Rule 8 - Nitrogen Oxides and Combustion Engines (7/25/07) | Published Value  Naturally Aspirated Engines (g/bhp-hr)(A)  VOC 250 ppmvd @ 15% O2 1.53  NOx 65 ppmvd @ 15% O2 0R 90% weight reduction  SOx No standard -  PM10 No standard -  PM2.5 No standard -  CO 4,500 ppmvd @ 15% O2 48.4  (A) Based on Santa Barbara County APCD Piston IC Engine Document (11/1/02) emission factor conversions, Section Document (11/1/02) emission |  |  |  |

The following control technologies have been identified and are ranked based on stringency:

|     | SUMMARY OF ACHIEVED IN PRACTICE CONTROL TECHNOLOGIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| VOC | For Spark Ignition, Emergency Standby Engines < 500 BHP  1. Lean burn: 86 ppmv @ 15% O₂ (0.4 g/bhp-hr) Rich burn: 0.29 g/hp-hr [SJVAPCD]  2. 0.66 g/bhp-hr (0.99 g/-bhp-hr) <sup>(A)</sup> [EPA, IA-0102]  3. Lean burn: 1.0 g/hp-hr Rich burn: 50% Control efficiency, 3-way catalyst with air-to-fuel ratio controller [SMAQMD]  4. 1.0 g/bhp-hr [BAAQMD]  5. 1.5 g/bhp-hr [SCAQMD]  6. 250 ppmvd @ 15% O₂ [SDAPCD] (1.53 g/bhp for naturally aspirated engines) (1.47 g/bhp for turbocharged engines)  For Spark Ignition, Emergency Standby Engines ≥ 500 BHP  1. Lean burn: 86 ppmv @ 15% O₂ (0.4 g/bhp-hr) Rich burn: 0.29 g/hp-hr [SJVAPCD]  2. 0.44 g/bhp-hr [EPA, OK-0153]  3. Lean burn: 0.6 g/hp-hr Rich burn: 50% Control efficiency, 3-way catalyst with air-to-fuel ratio controller [SMAQMD]  4. 1.0 g/bhp-hr [SCAQMD, BAAQMD]  5. 250 ppmvd @ 15% O₂ [SDAPCD] (1.53 g/bhp for naturally aspirated engines) (1.47 g/bhp for turbocharged engines) |  |  |  |  |
| NOx | For Spark Ignition, Emergency Standby Engines < 500 BHP  1. Lean burn: 1.0 g/hp-hr Rich burn: 25 ppmvd @ 15 O <sub>2</sub> OR 96% weight reduction [SMAQMD]  2. Lean burn: 1.0 g/bhp-hr Rich Burn: 25 ppmvd @ 15% O <sub>2</sub> (0.44 g/bhp-hr) [SJVAPCD]  3. 1.0 g/bhp-hr [BAAQMD]  4. Rich Burn: 25 ppmvd @ 15% O <sub>2</sub> OR 96% NOx weight reduction [SDAPCD] (0.44 g/bhp-hr for naturally aspirated engines) (0.42 g/bhp-hr for turbocharged engines) Lean Burn:65 ppmvd @ 15% O <sub>2</sub> OR 90% NOx weight reduction (1.14 g/bhp-hr for naturally aspirated engines) (1.10 g/bhp-hr for turbocharged engines) 5. 0.78 lb/hr (1.35 g/bhp-hr) <sup>(B)</sup> [EPA, CA-1225] 6. 1.5 g/bhp-hr [SCAQMD]                                                                                                                                                                                                                                                |  |  |  |  |

|      | SUMMARY OF ACHIEVED IN PRACTICE CONTROL TECHNOLOGIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| NOx  | <ul> <li>For Spark Ignition, Emergency Standby Engines ≥ 500 BHP</li> <li>1. Lean burn: 0.5 g/bhp-hr, Rich Burn: 25 ppmvd @ 15% O₂ (0.44 g/bhp-hr) [SJVAPCD]</li> <li>2. Lean burn: 0.5 g/hp-hr, Rich burn: 25 ppmvd @ 15 O₂OR 96% weight reduction [SMAQMD]</li> <li>3. Rich Burn: 25 ppmvd @ 15% O₂ OR 96% NOx weight reduction [SDAPCD] (0.44 g/bhp-hr for naturally aspirated engines) (0.42 g/bhp-hr for turbocharged engines)</li> <li>Lean Burn:65 ppmvd @ 15% O₂ OR 90% NOx weight reduction (1.14 g/bhp-hr for naturally aspirated engines) (1.10 g/bhp-hr for turbocharged engines)</li> <li>4. 0.5 g/bhp-hr [BPA, OK-0153]</li> <li>5. 1.0 g/bhp-hr [SCAQMD]</li> </ul> |  |  |  |
| SOx  | For Spark Ignition, Emergency Standby Engines < 500 BHP  1. Natural gas fuel [BAAQMD]  2. Natural gas or equivalent fuel [SMAQMD]  3. Use of clean fuels <sup>(C)</sup> [SCAQMD]  4. Natural gas, LPG, or Propane fuel [EPA, SJVAPCD]  5. No standard [SDAPCD]  For Spark Ignition, Emergency Standby Engines ≥ 500 BHP  1. 0.0015 g/kwh (0.0011 g/hp-hr) [EPA, IN-0167 & IN-0185] <sup>(E)</sup> 2. Natural gas fuel [BAAQMD]  3. Natural gas or equivalent fuel [SMAQMD]  4. Use of clean fuels <sup>(C)</sup> [SCAQMD]  5. Natural gas, LPG, or Propane fuel [SJVAPCD]  6. No standard [SDAPCD]                                                                                 |  |  |  |
| PM10 | For Spark Ignition, Emergency Standby Engines < 500 BHP  1. 0.0216 lb/hr [EPA, CA-1225] <sup>(F)</sup> 2. Natural gas fuel [BAAQMD] 3. Natural gas or equivalent fuel [SMAQMD] 4. Use of clean fuels <sup>(C)</sup> [SCAQMD] 5. Natural gas, LPG, or Propane fuel [SJVAPCD] 6. No standard [SDAPCD]  For Spark Ignition, Emergency Standby Engines ≥ 500 BHP 1. 0.0099 lb/MMBtu [EPA, MI-0401] 2. 0.0099 lb/MMBtu [SMAQMD] 3. Natural gas fuel [BAAQMD] 4. Use of clean fuels <sup>(C)</sup> [SCAQMD] 5. Natural gas, LPG, or Propane fuel [SJVAPCD] 6. No standard [SDAPCD]                                                                                                       |  |  |  |

| SUMMARY OF ACHIEVED IN PRACTICE CONTROL TECHNOLOGIES |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PM2.5                                                | For Spark Ignition, Emergency Standby Engines < 500 BHP  1. Natural gas or equivalent fuel [SMAQMD]  2. Use of clean fuels [SCAQMD]  3. No standard [EPA, SJVAPCD, SDACPD, BAAQMD]  For Spark Ignition, Emergency Standby Engines ≥ 500 BHP  1. 0.0099 lb/MMBtu [EPA, MI-0401]  2. 0.0099 lb/MMBtu [SMAQMD]  3. Use of clean fuels <sup>(c)</sup> [SCAQMD]  4. No Standard [SJVAPCD, SDAPCD, BAAQMD]                                                                                                                                                                                                                               |  |  |
| со                                                   | For Spark Ignition, Emergency Standby Engines < 500 BHP  1. 2.0 g/hp-hr [SMAQMD, SCAQMD, SJVAPCD]  2. 2.75 g/bhp-hr [BAAQMD]  3. 4.0 g/bhp-hr [EPA, CA-1225]  4. 4,500 ppmvd @ 15% O₂ [SDAPCD]     (48.4 g/bhp-hr for naturally aspirated engines)     (46.4 g/bhp-hr for turbocharged engines)  For Spark Ignition, Emergency Standby Engines ≥ 500 BHP  1. 0.43 g/bhp-hr [EPA, OK-0153] <sup>(G)</sup> 2. 1.5 g/bhp-hr [SMAQMD]  3. 2.0 g/bhp-hr [SCAQMD, SJVAPCD]  4. 2.75 g/bhp-hr [BAAMQD]  5. 4,500 ppmvd @ 15% O₂ [SDAPCD]     (48.4 g/bhp-hr for naturally aspirated engines)     (46.4 g/bhp-hr for turbocharged engines) |  |  |
| VHAP <sup>(D)</sup><br>(T-BACT)                      | For Spark Ignition, Emergency Standby Engines < 500 BHP 1. 1.0 g/bhp-hr [SMAQMD] 2. No standard [EPA, ARB, SCAQMD, BAAQMD, SDAPVD, SJVAPCD]  For Spark Ignition, Emergency Standby Engines ≥ 500 BHP 1. 0.6 g/bhp-hr [SMAQMD] 2. No standard [EPA, ARB, SCAQMD, BAAQMD, SDAPVD, SJVAPCD]                                                                                                                                                                                                                                                                                                                                           |  |  |

- (A) Conversion from lb/hr to g/bhp-hr based on a 225 KW engine and a conversion factor of 0.7457 kw/hp.
- (B) Conversion from lb/hr to g/bhp-hr based on a 256 BHP engine.
- (C) Clean fuels is defined as one that produces air emissions equivalent to or lower than natural gas for NOx, SOx, ROG, and fine particulate matter (PM10).
- (D) A full list of the volatile hazardous air pollutants (VHAP) from natural gas combustion can be found in AP-42, Section 3.2 Natural Gas-fired Reciprocating Engines, Tables 3.2-1, 3.2-2, and 3.2-3.
- (E) This BACT Determination did not specify if this was for a rich or lean burn engine. Compliance verification is listed as not verified. Therefore, this limit will not be considered achieved in practice.
- (F) This BACT Determination did not specify if this was for a rich or lean burn engine. Compliance verification is listed as unknown. Therefore, this limit will not be considered achieved in practice.
- (G) This BACT Determination did not specify if this was for a rich or lean burn engine. Compliance verification is listed as unknown. Therefore, this limit will not be considered achieved in practice.

The following control technologies have been identified as the most stringent, achieved in practice control technologies:

|           | BEST CONTROL TECHNOLOGIES ACHIEVED                                                                                                                                                                                                             |                                                                |  |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|
| Pollutant | Standard                                                                                                                                                                                                                                       | Source                                                         |  |  |  |
|           | For gaseous or propane/LPG fired emergency IC Engines < 500 BHP (excluding biogas) Lean burn: 86 ppmv @ 15% O <sub>2</sub> (0.4 g/bhp-hr) Rich burn: 0.29 g/hp-hr                                                                              | SJVAPCD                                                        |  |  |  |
| VOC       | For gaseous or propane/LPG fired emergency IC Engines ≥ 500 BHP (excluding biogas) Lean burn: 86 ppmv @ 15% O₂ (0.4 g/bhp-hr) Rich burn: 0.29 g/hp-hr                                                                                          | SJVAPCD                                                        |  |  |  |
| NOx       | For gaseous or propane/LPG fired emergency IC Engines < 500 BHP (excluding biogas) Lean burn: 1.0 g/hp-hr Rich burn: 25 ppmvd @ 15 O <sub>2</sub> (0.44 g/hp-hr) OR 96% weight reduction                                                       | SMAQMD & SJVAPCD                                               |  |  |  |
|           | For gaseous or propane/LPG fired emergency IC Engines ≥ 500 BHP (excluding biogas) Lean burn: 0.5 g/hp-hr Rich burn: 25 ppmvd @ 15 O₂ (0.44 g/hp-hr) OR 96% weight reduction                                                                   | SJVAPCD                                                        |  |  |  |
| SOx       | For gaseous or propane/LPG fired emergency IC Engines < 500 BHP (excluding biogas) Natural gas fuel or equivalent fuel  For gaseous or propane/LPG fired emergency IC Engines ≥ 500 BHP (excluding biogas) Natural gas fuel or equivalent fuel | SMAQMD, SCAQMD,<br>SJVUAPCD, and BAAQMD                        |  |  |  |
| PM10      | For gaseous or propane/LPG fired emergency IC Engines < 500 BHP (excluding biogas) Natural gas fuel or equivalent fuel  For gaseous or propane/LPG fired emergency IC Engines ≥ 500 BHP (excluding biogas)  0.0099 lb/MMBtu                    | SMAQMD, SCAQMD,<br>SJVUAPCD, and BAAQMD<br>SMAQMD, EPA MI-0401 |  |  |  |

|                      | BEST CONTROL TECHNOLOGIES AC                                                                                                                                      | CHIEVED                 |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|
| Pollutant            | Standard                                                                                                                                                          | Source                  |  |  |
| PM2.5 <sup>(A)</sup> | For gaseous or propane/LPG fired emergency IC Engines < 500 BHP (excluding biogas) Natural gas fuel or equivalent fuel                                            | BAAQMD                  |  |  |
|                      | For gaseous or propane/LPG fired emergency IC Engines ≥ 500 BHP (excluding biogas) 0.0099 lb/MMBtu                                                                | SMAQMD, EPA MI-0401     |  |  |
| СО                   | For gaseous or propane/LPG fired emergency IC Engines < 500 BHP (excluding biogas) 2.0 g/hp-hr                                                                    | SMAQMD, SCAQMD, SJVAPCD |  |  |
|                      | For gaseous or propane/LPG fired emergency IC Engines ≥ 500 BHP (excluding biogas)  1.5 g/bhp-hr                                                                  | SMAQMD                  |  |  |
| VHAP                 | For gaseous or propane/LPG fired emergency IC Engines < 500 BHP (excluding biogas) Lean burn: 86 ppmv @ 15% O <sub>2</sub> (0.4 g/bhp-hr) Rich burn: 0.29 g/hp-hr | SJVAPCD                 |  |  |
|                      | For gaseous or propane/LPG fired emergency IC Engines ≥ 500 BHP (excluding biogas) Lean burn: 86 ppmv @ 15% O <sub>2</sub> (0.4 g/bhp-hr) Rich burn: 0.29 g/hp-hr | SJVAPCD                 |  |  |

<sup>(</sup>A) All PM is expected to be less than 1.0 micrometer in diameter and therefore PM10 BACT is equivalent to PM2.5 BACT.

### B. TECHNOLOGICALLY FEASIBLE AND COST EFFECTIVE (Rule 202, §205.1.b.):

### **Technologically Feasible Alternatives:**

Any alternative basic equipment, fuel, process, emission control device or technique, singly or in combination, determined to be technologically feasible by the Air Pollution Control Officer.

During the most recent rulemaking for updates to the Airborne Toxic Control Measure for Stationary Compression Ignition Engines (Title 17, Cal. Code. Regs., §93115 to §93115.15), ARB conducted a cost effectiveness analysis to determine if selective catalytic reduction (SCR) was technologically feasible and cost effective for emergency use applications. (Initial Statement of Reasons for Proposed Rulemaking: Proposed Amendments to the Airborne Toxic Control Measure for Stationary Compression Ignition Engines, Appendix B, September 2010). Although

the analysis was for stationary compression ignition engines, the listed SCR challenges due to the operational nature of emergency standby engines is also applicable for stationary spark ignition engines.

The analysis concluded that SCR may be technologically feasible, but had some additional challenges. Because standby engines routinely operate only for scheduled maintenance and testing, the engines do not operate more than 15-30 minutes, and do operate at no or low load. Because of this the exhaust would not likely reach the temperature (260 °C to 540 °C) required for the catalyst to operate. To circumvent this problem, the engine would need to be operated with higher loads and in many cases for longer periods of time. This could be a challenge for most emergency standby applications as most businesses do not have load banks in house and would have to create a larger load on the engine to get the catalyst up to operational temperature. Urea handling and maintenance is also an important consideration. Urea crystallization in the lines can cause damage to the SCR system and to the engine itself. Crystallization in the lines is more likely in emergency standby engines due to their periodic and low hours of usage. Urea also has a shelf life of approximately two years. This could increase the cost of operating a SCR for emergency standby engines since the low number of annual hours of operation experienced by most emergency standby engines could lead to urea expiration. The urea would then have to be drained and replaced, creating an extra maintenance step and an increased cost to the end user.

ARB staff determined that while, SCR systems may be technically feasible, there are significant operational hurdles to overcome before routine use of SCR on emergency standby engines is practical. This is because the majority of operating hours for emergency standby engines occur during short 15 to 30 minute maintenance and testing checks are at low engine loads. In most cases, the temperature needed for the SCR catalyst to function will not be reached during this operation and the SCR will not provide the expected NOx reductions.

The table below shows the technologically feasible alternatives identified as capable of reducing emissions beyond the levels determined to be "Achieved in Practice" as per Rule 202, §205.1.a.

| Pollutant | Technologically Feasible Alternatives                |  |
|-----------|------------------------------------------------------|--|
| voc       | No other technologically feasible option identified  |  |
| NOx       | For lean burn engines: Selective Catalytic Reduction |  |
| SOx       | No other technologically feasible option identified  |  |
| PM10      | No other technologically feasible option identified  |  |
| PM2.5     | No other technologically feasible option identified  |  |
| СО        | No other technologically feasible option identified  |  |

### **Cost Effective Determination:**

After identifying the technologically feasible control options, a cost analysis is performed to take into consideration economic impacts for all technologically feasible controls identified.

### Maximum Cost per Ton of Air Pollutants Controlled

1. A control technology is considered to be cost-effective if the cost of controlling one ton of that air pollutant is less than the limits specified below (except coating operations):

| Pollutant | Maximum Cost (\$/ton) |
|-----------|-----------------------|
| ROG       | 17,500                |
| $NO_X$    | 24,500                |
| PM10      | 11,400                |
| $SO_X$    | 18,300                |
| CO        | TBD if BACT triggered |

### Cost Effectiveness Analysis Summary

### SCR:

As shown in Attachment C, the cost effectiveness for the add on SCR system to control NOx to a 96% weight reduction was calculated to be \$181,576.47/ton for a 499 bhp engine and \$152,555.04/ton for a 1000 bhp engine (see attached Engine Cost Effectiveness Analysis). Since the cost per ton of NOx removal increases as engine size decreases and a 499 bhp engine was found to not be cost effective, the lower bound cost of a 50 bhp engine was not calculated. The following basic parameters were used in the analysis.

### 499 BHP Engine

NOx Control Level = 0.02356 lb/MMBtu (96% weight reduction)

NOx Baseline Level = 0.589 lb/MMBtu (160 ppmv @ 15% O2 per Subpart JJJJ)

Engine Rating = 499 BHP (4.8 MMBtu/hr)

Engine Operating Hours = 100 hours/year (maximum maintenance hours)

Equipment Life = 20 years

Direct Cost = \$139,848.01

Direct Annual Cost = \$8,778.86 per year

Indirect Annual Cost = \$15,862.08 per year

Total Annual Cost = \$24,640.94 per year

NOx Removed = 0.14 tons per year

Cost of NOx Removal = \$181,576.47 per ton reduced

### 1,000 BHP Engine

NOx Control Level = 0.02356 lb/MMBtu (96% weight reduction)

NOx Baseline Level = 0.589 lb/MMBtu (160 ppmv @ 15% O2 per Subpart JJJJ)

Engine Rating = 1,000 BHP (9.6 MMBtu/hr)

Engine Operating Hours = 100 hours/year (maximum maintenance hours)

Equipment Life = 20 years

Direct Cost = \$220,942.20

Direct Annual Cost = \$16,317.19 per year

Indirect Annual Cost = \$25,087.96 per year

Total Annual Cost = \$41,405.15 per year

NOx Removed = 0.27 tons per year

Cost of NOx Removal = \$152,555.04 per ton reduced

Therefore, the add-on SCR system is considered not cost effective for either engine size and is eliminated.

### C. SELECTION OF BACT/T-BACT:

Based on the above analysis, BACT for VOC, NOx, SOx, PM10, and CO will remain at what is currently achieved in practice and BACT for PM2.5 will be set to be the same as for PM10.

Volatile hazardous air pollutants (VHAP) are the primary driver for health risks associated with gaseous fueled engines. VHAPs are emitted as VOC, and the same control technologies that control VOC also control VHAPs. Therefore, the BACT for VOC and T-BACT for VHAPs are the same.

| Table 1: BACT #208 FOR SPARK IGNITED I.C. ENGINES, STANDBY, GASEOUS-FUELED (EXCLUDING BIOGAS) < 500 BHP |                                                                                      |                                      |  |  |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------|--|--|
| Pollutant                                                                                               | Standard                                                                             | Source                               |  |  |
| VOC                                                                                                     | Lean Burn<br>86 ppmv @ 15% O <sub>2</sub> (0.4 g/bhp-hr)                             | SJVAPCD                              |  |  |
|                                                                                                         | Rich Burn<br>0.29 g/hp-hr                                                            |                                      |  |  |
|                                                                                                         | Lean-Burn:<br>1.0 g/bhp-hr                                                           |                                      |  |  |
| NOx                                                                                                     | Rich Burn:<br>25 ppmvd @ 15 O <sub>2</sub> (0.44 g/hp-hr) OR 96% weight<br>reduction | SMAQMD & SJVAPCD                     |  |  |
| SOx                                                                                                     | Natural gas fuel or equivalent fuel                                                  | SMAQMD, SCAQMD, SJVUAPCD, and BAAQMD |  |  |
| PM10                                                                                                    | Natural gas fuel or equivalent fuel                                                  | SMAQMD, SCAQMD, SJVUAPCD, and BAAQMD |  |  |
| PM2.5                                                                                                   | Natural gas fuel or equivalent fuel                                                  | SMAQMD, SCAQMD, SJVUAPCD, and BAAQMD |  |  |
| СО                                                                                                      | 2.0 g/bhp-hr                                                                         | SMAQMD, SCAQMD, SJVAPCD              |  |  |

| Table 2: T-BACT #208 FOR SPARK IGNITED I.C. ENGINES, STANDBY, GASEOUS-<br>FUELED (EXCLUDING BIOGAS) < 500 BHP |                                                                                              |         |  |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------|--|
| Pollutant                                                                                                     | Standard                                                                                     | Source  |  |
| VHAP <sup>(A)</sup>                                                                                           | Lean Burn<br>86 ppmv @ 15% O <sub>2</sub> (0.4 g/bhp-hr)<br><u>Rich Burn</u><br>0.29 g/hp-hr | SJVAPCD |  |

<sup>(</sup>A) A full list of the volatile hazardous air pollutants (VHAP) from natural gas combustion can be found in AP-42, Section 3.2 Natural Gas-fired Reciprocating Engines, Tables 3.2-1, 3.2-2, and 3.2-3.

| Table 3: BACT #209 FOR SPARK IGNITED I.C. ENGINES, STANDBY, GASEOUS-FUELED (EXCLUDING BIOGAS) ≥ 500 BHP |                                                                                                         |                        |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|
| Pollutant Standard Source                                                                               |                                                                                                         |                        |  |  |  |  |
| voc                                                                                                     | <u>Lean Burn</u><br>86 ppmv @ 15% O₂ (0.4 g/bhp-hr)<br><u>Rich Burn</u><br>0.29 g/hp-hr                 | SJVAPCD                |  |  |  |  |
| NOx                                                                                                     | Lean-Burn: 0.5 g/bhp-hr  Rich Burn: 25 ppmvd @ 15 O <sub>2</sub> (0.44 g/hp-hr) OR 96% weight reduction | SMAQMD & SJVAPCD       |  |  |  |  |
| SOx                                                                                                     | Natural gas fuel or equivalent fuel                                                                     | BAAQMD                 |  |  |  |  |
| PM10                                                                                                    | 0.0099 lb/MMBtu                                                                                         | SMAQMD, EPA (MI-00401) |  |  |  |  |
| PM2.5                                                                                                   | 0.0099 lb/MMBtu                                                                                         | SMAQMD, EPA (MI-00401) |  |  |  |  |
| со                                                                                                      | 1.5 g/p-hr                                                                                              | SMAQMD                 |  |  |  |  |

| Table 4: T-BACT #209 FOR SPARK IGNITED I.C. ENGINES, STANDBY, GASEOUS-<br>FUELED (EXCLUDING BIOGAS) ≥ 500 BHP |                                                                                                     |         |  |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------|--|
| Pollutant                                                                                                     | Standard                                                                                            | Source  |  |
| VHAP <sup>(A)</sup>                                                                                           | <u>Lean Burn</u><br>86 ppmv @ 15% O <sub>2</sub> (0.4 g/bhp-hr)<br><u>Rich Burn</u><br>0.29 g/hp-hr | SJVAPCD |  |

<sup>(</sup>A) A full list of the volatile hazardous air pollutants (VHAP) from natural gas combustion can be found in AP-42, Section 3.2 Natural Gas-fired Reciprocating Engines, Tables 3.2-1, 3.2-2, and 3.2-3.

### **Attachment A**

**Review of BACT Determinations published by EPA** 

List of BACT determinations published in EPA's RACT/BACT/LAER Clearinghouse (RBLC) for Natural Gas (includes propane & liquefied petroleum gas) I.C. Engines  $\leq$  500 BHP & > 500 BHP

| RBLC#          | Permit<br>Date <sup>(A)</sup> | Process<br>Code (B), (C) | Engine Burn<br>Type | Rating    | Pollutant | Standard                   | Case-By-Case Basis |
|----------------|-------------------------------|--------------------------|---------------------|-----------|-----------|----------------------------|--------------------|
| MI-0426        | 3/24/17                       | 17.130                   | Not Listed          | 1,818 BHP | СО        | 11.0 lb/hr                 | BACT-PSD           |
| <u>MI-0426</u> | 3/24/17                       | 17.130                   | Not Listed          | 1,818 BHP | NOx       | 4.0 lb/hr & 2.0<br>g/hp-hr | BACT-PSD           |
| MI-0426        | 3/24/17                       | 17.130                   | Not Listed          | 1,818 BHP | PM10      | 0.01 lb/mmBtu              | BACT-PSD           |
| MI-0426        | 3/24/17                       | 17.130                   | Not Listed          | 1,818 BHP | PM2.5     | 0.01 lb/mmBtu              | BACT-PSD           |
| <u>CA-1240</u> | 3/17/17                       | 17.130                   | Not Listed          | 881 BHP   | VOC       | 25 ppmvd @<br>15% O2       | Other Case-By-Case |
| <u>CA-1240</u> | 3/17/17                       | 17.130                   | Not Listed          | 881 BHP   | СО        | 54 ppmvd @<br>15% O2       | Other Case-By-Case |
| <u>CA-1240</u> | 3/17/17                       | 17.130                   | Not Listed          | 881 BHP   | NOx       | 5 ppmvd @<br>15% O2        | Other Case-By-Case |
| <u>CA-1240</u> | 3/17/17                       | 17.130                   | Not Listed          | 881 BHP   | NH3       | 5 ppmvd @<br>15% O2        | Other Case-By-Case |
| <u>MI-0424</u> | 12/5/16                       | 17.130                   | Not Listed          | 1,462 BHP | СО        | 0.8 g/hp-hr                | BACT-PSD           |
| MI-0424        | 12/5/16                       | 17.130                   | Not Listed          | 1,462 BHP | NOx       | 2.0 g/hp-hr                | BACT-PSD           |
| MI-0424        | 12/5/16                       | 17.130                   | Not Listed          | 1,462 BHP | PM10      | 0.01 lb/mmBtu              | BACT-PSD           |
| MI-0424        | 12/5/16                       | 17.130                   | Not Listed          | 1,462 BHP | PM2.5     | 0.01 lb/mmBtu              | BACT-PSD           |
| MI-0424        | 12/5/16                       | 17.130                   | Not Listed          | 1,462 BHP | VOC       | 0.5 g/hp-hr                | BACT-PSD           |
| <u>MI-0420</u> | 6/3/16                        | 17.130                   | Not Listed          | 1,506 kW  | СО        | 9.6 lb/hr & 4.0<br>g/hp-hr | BACT-PSD           |
| MI-0420        | 6/3/16                        | 17.130                   | Not Listed          | 1,506 kW  | NOx       | 4.8 lb/hr & 2.0<br>g/hp-hr | BACT-PSD           |
| MI-0420        | 6/3/16                        | 17.130                   | Not Listed          | 1,506 kW  | PM10      | 0.01 lb/mmBtu              | BACT-PSD           |
| MI-0420        | 6/3/16                        | 17.130                   | Not Listed          | 1,506 kW  | PM2.5     | 0.01 lb/mmBtu              | BACT-PSD           |

| RBLC#          | Permit<br>Date <sup>(A)</sup> | Process<br>Code (B), (C) | Engine Burn<br>Type | Rating    | Pollutant | Standard                  | Case-By-Case Basis |
|----------------|-------------------------------|--------------------------|---------------------|-----------|-----------|---------------------------|--------------------|
| SC-0170        | 11/7/14                       | 17.130                   | Not Listed          | 500 kW    | СО        | Tier 3 emission standards | BACT-PSD           |
| <u>SC-0170</u> | 11/7/14                       | 17.130                   | Not Listed          | 500 kW    | VOC       | Tier 3 emission standards | BACT-PSD           |
| LA-0287        | 7/21/14                       | 17.130                   | Not Listed          | 1175 BHP  | NOx       | 2.0 g/hp-hr               | BACT-PSD           |
| LA-0287        | 7/21/14                       | 17.130                   | Not Listed          | 1175 BHP  | PM10      | 0.004 lb/hr               | BACT-PSD           |
| LA-0287        | 7/21/14                       | 17.130                   | Not Listed          | 1175 BHP  | PM2.5     | 0.004 lb/hr               | BACT-PSD           |
| <u>IN-0185</u> | 4/24/14                       | 17.130                   | Not Listed          | 620 BHP   | PM10      | 0.2 g/kWh                 | BACT-PSD           |
| <u>IN-0185</u> | 4/24/14                       | 17.130                   | Not Listed          | 620 BHP   | PM2.5     | 0.2 g/kWh                 | BACT-PSD           |
| <u>IN-0185</u> | 4/24/14                       | 17.130                   | Not Listed          | 620 BHP   | SO2       | 0.0015 g/kWh              | BACT-PSD           |
| MI-0412        | 12/4/13                       | 17.130                   | Not Listed          | 1,000 kW  | СО        | 0.8 g/hp-hr               | BACT-PSD           |
| MI-0412        | 12/4/13                       | 17.130                   | Not Listed          | 1,000 kW  | NOx       | 2.0 g/hp-hr               | BACT-PSD           |
| MI-0412        | 12/4/13                       | 17.130                   | Not Listed          | 1,000 kW  | PM10      | 0.01 lb/mmBtu             | BACT-PSD           |
| MI-0412        | 12/4/13                       | 17.130                   | Not Listed          | 1,000 kW  | PM2.5     | 0.01 lb/mmBtu             | BACT-PSD           |
| MI-0412        | 12/4/13                       | 17.130                   | Not Listed          | 1,000 kW  | VOC       | 0.5 g/hp-hr               | BACT-PSD           |
| LA-0311        | 7/15/13                       | 17.130                   | Not Listed          | 2,500 BHP | СО        | 27.56 lb/hr               | BACT-PSD           |
| <u>IN-0167</u> | 4/16/13                       | 17.130                   | Not Listed          | 620 BHP   | NOx       | 0.5 g/hp-hr               | BACT-PSD           |
| <u>IN-0167</u> | 4/16/13                       | 17.130                   | Not Listed          | 620 BHP   | PM10      | 0.2 g/kw-hr               | BACT-PSD           |
| <u>IN-0167</u> | 4/16/13                       | 17.130                   | Not Listed          | 620 BHP   | PM2.5     | 0.2 g/kw-hr               | BACT-PSD           |
| <u>IN-0167</u> | 4/16/13                       | 17.130                   | Not Listed          | 620 BHP   | SO2       | 0.0015 g/kw-hr            | BACT-PSD           |
| OK-0153        | 3/1/13                        | 17.130                   | Not Listed          | 2,889 BHP | CO        | 0.43 g/hp-hr              | BACT-PSD           |
| OK-0153        | 3/1/13                        | 17.130                   | Not Listed          | 2,889 BHP | NOx       | 0.5 g/hp-hr               | BACT-PSD           |
| OK-0153        | 3/1/13                        | 17.130                   | Not Listed          | 2,889 BHP | PM2.5     | 0.01 lb/mmBtu             | BACT-PSD           |
| OK-0153        | 3/1/13                        | 17.130                   | Not Listed          | 2,889 BHP | VOC       | 0.44 g/hp-hr              | BACT-PSD           |
| MI-0401        | 12/21/11                      | 17.130                   | Not Listed          | 1,200 kW  | NOx       | 0.5 g/hp-hr               | BACT-PSD           |

| RBLC#          | Permit<br>Date <sup>(A)</sup> | Process<br>Code (B), (C) | Engine Burn<br>Type | Rating                | Pollutant  | Standard            | Case-By-Case Basis                        |
|----------------|-------------------------------|--------------------------|---------------------|-----------------------|------------|---------------------|-------------------------------------------|
| <u>MI-0401</u> | 12/21/11                      | 17.130                   | Not Listed          | 1,200 kW              | PM10       | 0.00999<br>lb/mmBtu | BACT-PSD                                  |
| <u>MI-0401</u> | 12/21/11                      | 17.130                   | Not Listed          | 1,200 kW              | PM2.5      | 0.00999<br>lb/mmBtu | BACT-PSD                                  |
| LA-0256        | 12/06/2011                    | 17.130                   | Not Listed          | 1,818 BHP             | PM10       | 0.01 lb/hr          | BACT-PSD, Operating Permit <sup>(D)</sup> |
| <u>LA-0256</u> | 12/06/2011                    | 17.130                   | Not Listed          | 1,818 BHP             | PM2.5      | 0.01 lb/hr          | BACT-PSD, Operating Permit <sup>(D)</sup> |
| <u>LA-0256</u> | 12/06/2011                    | 17.130                   | Not Listed          | 1,818 BHP             | PM (TSP)   | 0.01 lb/hr          | BACT-PSD, Operating Permit <sup>(D)</sup> |
| LA-0257        | 12/06/2011                    | 17.130                   | Not Listed          | 2,012 BHP             | СО         | 4.0 lb/bhp-r        | BACT-PSD <sup>(E)</sup>                   |
| LA-0257        | 12/06/2011                    | 17.130                   | Not Listed          | 2,012 BHP             | NOx        | 2.0 g/bhp-hr        | BACT-PSD <sup>(E)</sup>                   |
| LA-0257        | 12/06/2011                    | 17.130                   | Not Listed          | 2,012 BHP             | PM (TPM)   | N/A                 | BACT-PSD                                  |
| LA-0257        | 12/06/2011                    | 17.130                   | Not Listed          | 2,012 BHP             | VOC        | 1.0 g/bhp-r         | BACT-PSD <sup>(E)</sup>                   |
| <u>CA-1192</u> | 6/21/2011                     | 17.130                   | Not Listed          | 860 BHP<br>(550.0 KW) | СО         | N/A                 | BACT-PSD <sup>(F)</sup>                   |
| <u>CA-1192</u> | 6/21/2011                     | 17.130                   | Not Listed          | 860 BHP<br>(550.0 KW) | NOx        | N/A                 | BACT-PSD <sup>(F)</sup>                   |
| <u>CA-1192</u> | 6/21/2011                     | 17.130                   | Not Listed          | 860 BHP<br>(550.0 KW) | PM (TPM)   | N/A                 | BACT-PSD <sup>(F)</sup>                   |
| <u>CA-1192</u> | 6/21/2011                     | 17.130                   | Not Listed          | 860 BHP<br>(550.0 KW) | PM (PM10)  | N/A                 | BACT-PSD <sup>(F)</sup>                   |
| <u>MI-0390</u> | 10/14/2010                    | 17.130                   | Not Listed          | 1818 BHP              | NOx        | 0.5 g/bhp-hr        | BACT-PSD, NSPS, NESHAP                    |
| LA-0232        | 6/24/2008                     | 17.130                   | Not Listed          | 838 BHP               | NOx        | 4.8 lb/hr           | BACT-PSD, Operating Permit                |
| LA-0232        | 6/24/2008                     | 17.130                   | Not Listed          | 838 BHP               | VOC        | 1.39 lb/hr          | BACT-PSD, Operating Permit                |
| MD-0036        | 3/10/2006                     | 17.130                   | Not Listed          | 1,085 BHP<br>(770KW)  | СО         | 1.5 g/bhp-hr        | BACT-PSD                                  |
| MD-0036        | 3/10/2006                     | 17.130                   | Not Listed          | 1,085 BHP<br>(770KW)  | NOx        | 2.0 g/bhp-hr        | BACT-PSD                                  |
| MD-0036        | 3/10/2006                     | 17.130                   | Not Listed          | 1,085 BHP<br>(770KW)  | PM (FPM10) | 0.0099<br>lb/MMBtu  | BACT-PSD <sup>(G)</sup>                   |

| RBLC#          | Permit<br>Date <sup>(A)</sup> | Process<br>Code (B), (C) | Engine Burn<br>Type | Rating                | Pollutant  | Standard                            | Case-By-Case Basis                           |
|----------------|-------------------------------|--------------------------|---------------------|-----------------------|------------|-------------------------------------|----------------------------------------------|
| MD-0036        | 3/10/2006                     | 17.130                   | Not Listed          | 1,085 BHP<br>(770 KW) | VOC        | 0.6 g/hp-hr                         | LAER                                         |
| <u>LA-0276</u> | 12/15/16                      | 17.230                   | Not Listed          | 150 kW                | VOC        | Comply with<br>NSPS Subpart<br>JJJJ | BACT-PSD                                     |
| FL-0356        | 3/9/16                        | 17.230                   | Not Listed          | 25 kW                 | СО         | 387 g/hp-hr                         | BACT-PSD                                     |
| <u>CA-1225</u> | 4/25/14                       | 17.230                   | Not Listed          | 256 BHP               | CO         | 4.0 g/hp-hr                         | BACT-PSD                                     |
| <u>CA-1225</u> | 4/25/14                       | 17.230                   | Not Listed          | 256 BHP               | NOx        | 0.78 lb/hr                          | BACT-PSD                                     |
| <u>CA-1225</u> | 4/25/14                       | 17.230                   | Not Listed          | 256 BHP               | FPM        | 0.0216 lb/hr                        | BACT-PSD                                     |
| <u>CA-1225</u> | 4/25/14                       | 17.230                   | Not Listed          | 256 BHP               | PM10       | 0.0216 lb/hr                        | BACT-PSD                                     |
| LA-0311        | 7/15/13                       | 17.230                   | Not Listed          | 300 BHP               | СО         | 3.31 lb/hr                          | BACT-PSD                                     |
| <u>IA-0102</u> | 2/1/2012                      | 17.230                   | Not Listed          | 225 KW                | VOC        | 0.66 lb/hr                          | BACT-PSD <sup>(H)</sup>                      |
| WA-0316        | 6/14/2006                     | 17.230                   | Not Listed          | 450 KW                | NOx        | 82 g/hr                             | BACT-PSD <sup>(I)</sup>                      |
| <u>NV-0048</u> | 5/16/2006                     | 17.230                   | Not Listed          | 771 BHP<br>(575 KW)   | СО         | 2.0 g/bhp-hr                        | Other Case-by-Case, SIP,<br>Operating Permit |
| <u>NV-0048</u> | 5/16/2006                     | 17.230                   | Not Listed          | 771 BHP<br>(575 KW)   | NOx        | 21.5 g/bhp-hr                       | Other Case-by-Case, SIP,<br>Operating Permit |
| NV-0048        | 5/16/2006                     | 17.230                   | Not Listed          | 771 BHP<br>(575 KW)   | PM (FPM10) | 0.0410 g/bhp-hr                     | Other Case-by-Case, SIP,<br>Operating Permit |
| NV-0048        | 5/16/2006                     | 17.230                   | Not Listed          | 771 BHP<br>(575 KW)   | SOx        | 0.0052 g/bhp-hr                     | Other Case-by-Case, SIP,<br>Operating Permit |
| <u>NV-0048</u> | 5/16/2006                     | 17.230                   | Not Listed          | 771 BHP<br>(575 KW)   | VOC        | 0.23 g/bhp-hr                       | Other Case-by-Case, SIP,<br>Operating Permit |

<sup>(</sup>A) Due to the large number of entries only determinations made (based on Permit Date) entered since 01/01/2005 are included in the above table.

<sup>(</sup>B) Process Code 17.130 includes Large Internal Combustion Engines (> 500 BHP) fueled using natural gas (includes propane and liquid petroleum gas).

<sup>(</sup>C) Process Code 17.230 includes Small Internal Combustion Engines (≤ 500 BHP) fueled using natural gas (includes propane and liquid petroleum gas).

<sup>(</sup>D) BACT was determined to be use of natural gas fuel and good combustion practices. Emission limits for PM10, PM2.5, and PM (TSP) were determined to be <0.01 lb/hr and was established by Louisiana Department of Environmental Quality Permit PSD-LA-754 for Westlake Vinyls

- Company, LP.
- (E) Emission Limits are based on 40 CFR Part 60 Subpart JJJJ Standards of Performance for Stationary Spark Ignition Internal Combustion Engines. (NSPS, Subpart IIII)
- (F) The Ninth Circuit Court of Appeals issued a decision on 8/12/2014 that vacated the permit decision and remanded it to EPA. Therefore, this BACT determination has not yet been achieved in practice. Source: EPA Region IX, Avenal Energy Product.
- (G) Emission limit for PM is based on AP-42 PM condensable emission factor for natural gas-fired reciprocating engines.
- (H) BACT was determined to be good combustion practices. Emission limit for VOC was determined to be 0.66 lb/hr and was established by Iowa Department of Natural Resources; Air Quality Bureau, Title V Permit <u>03-TV-025R2</u> (page 133) for Alcoa, Inc.
- (I) BACT was determined to be non-selective catalytic reduction. Emission limit for NOx was determined to be ≤82 g/hr and was established by Washington State Department of Ecology; Air Quality Program, Permit PSD-01-09 Amendment 6 for Northwest Pipeline Corporation
  - = Not applicable to this determination. Equipment has not yet been achieved in practice or is for a specific purpose outside of the scope of this determination.
  - = Selected as the most stringent BACT determination achieved in practice.

### Attachment B

**Review of BACT Determinations published by ARB** 

List of BACT determinations published in ARB's BACT Clearinghouse for ICE: Spark Ignition, Natural Gas & ICE: Emergency, Spark Ignition:

| Capacity | Source                | Date       | Engine Burn<br>Type | NOx                          | voc                          | со                          | PM10           | SOx            |
|----------|-----------------------|------------|---------------------|------------------------------|------------------------------|-----------------------------|----------------|----------------|
| 528 BHP  | MBUAPCD               | 10/13/2005 | Rich Burn           | 0.07 g/bhp-hr <sup>(A)</sup> | N/A                          | N/A                         | N/A            | N/A            |
| 93 BHP   | SCAQMD                | 10/06/2000 | Rich Burn           | 0.15 g/bhp-hr <sup>(B)</sup> | 0.15 g/bhp-hr                | 0.6 g/bhp-hr                | N/A            | N/A            |
| 1334 BHP | SCAQMD                | 12/7/1999  | Rich Burn           | 1.5 g/bhp-hr <sup>(B)</sup>  | 1.5 g/bhp-hr <sup>(B)</sup>  | 2.0 g/bhp-hr <sup>(B)</sup> | N/A            | N/A            |
| 750 BHP  | SCAQMD(C)             | N/A        | Rich Burn           | 0.15 g/bhp-hr <sup>(B)</sup> | 0.15 g/bhp-hr <sup>(B)</sup> | 0.6 g/bhp-hr <sup>(B)</sup> | N/A            | N/A            |
| 310 BHP  | SMAQMD <sup>(D)</sup> | 10/22/2004 | Rich Burn           | 2.13 g/bhp-hr <sup>(A)</sup> | 0.0449 <sup>(A)</sup>        | 1.6 g/bhp-hr <sup>(A)</sup> | 0.152 g/bhp-hr | 0.002 g/bhp-hr |

<sup>(</sup>A) Add-on control – 3-way catalytic converter,

= Not enough information to determine if engine is for standby purposes

= Selected as the most stringent BACT determination achieved in practice.

<sup>(</sup>B) Add-on control – 3-way catalytic converter and air/fuel ratio controller

<sup>(</sup>C) SCAQMD is reconsidering the BACT requirement for future applications of this type. Source: SCAQMD Application No. 359876

<sup>(</sup>D) Emission limits are based on emissions for the specific engine and is not a standard for gaseous emergency standby engines

## Attachment C Cost Effectiveness Calculations

### **ENGINE SCR COST EFFECTIVENESS CALCULATION**

EPA AIR POLLUTION CONTROL COST MANUAL, Sixth Edition, EPA/452/B-02-001, January 2002

Section 4.2 - NOx Post-Combustion, Chapter 2 - Selective Catalytic Reduction

| Cost Effectiveness =                  | \$ 181,576.47   | \$/ton      |
|---------------------------------------|-----------------|-------------|
|                                       |                 |             |
| Equipment                             |                 |             |
| Engine rating (499 BHP)               | 4.8             | mmBTU/hr    |
| Engine Operating hours                | 100             | hours       |
| Engine capacity factor                | 1               |             |
| SCR Operating Days                    | 365             | days        |
| Total Capacity Factor                 | 1               |             |
| Baseline NOx (30 ppm)                 | 0.589           | lb/mmBTU    |
| SCR NOx (5 ppm)                       | 0.02356         | lb/mmBTU    |
| Ammonia Slip                          | 10              | ppm         |
| Ammonia Stoichiometric Ratio          | 1.05            |             |
| Stored Ammonia Conc                   | 29              | %           |
| Ammonia Storage days                  | 90              | days        |
| Sulfur Content                        | 0.005           | %           |
| Pressure drop for SCR Ductwork        | 3               | inches W.G. |
| Pressure drop for each Catalyst Layer | 1               | inches W.G. |
| Temperature at SCR Inlet              | 650             | degrees F   |
| Equipment Life                        | 20              | years       |
| Annual interest Rate                  | 5               | %           |
| Catalyst cost, Initial                | 240             | \$/ft2      |
| Catalyst cost, replacement            | 290             | \$/ft2      |
| Electrical Power cost                 | 0.1124          | \$/KWh      |
| Ammonia Cost                          | 0.101           | \$/lb       |
| Catalyst Life                         | 24000           | hr          |
| Catalyst Layers                       | 2 full, 1 empty |             |
| Engine Calculations                   |                 |             |
| $Q_{B}$                               | 4.8             | mmBTU/hr    |
| <b>Q</b> flue gas                     | 1710.371508     | acfm        |

 $N_{NOx}$  0.96

### **SCR Reactor Calculations**

| Vol <sub>Catalyst</sub> | 14.47935815 | ft3 |    |
|-------------------------|-------------|-----|----|
| A <sub>Catalyst</sub>   | 1.781636988 | ft2 |    |
| A <sub>SCR</sub>        | 2.048882536 | ft2 |    |
| I=w=                    | 1.431391818 | ft  |    |
| n <sub>layer</sub>      | 3           |     |    |
| $h_{layer}$             | 3.708998943 |     |    |
| $n_{\text{total}}$      | 4           |     |    |
| h <sub>SCR</sub>        | 51.83599577 |     | ft |

### **Reagent Calculations**

| n <sub>reagent</sub> 1.098773675 |             |       |
|----------------------------------|-------------|-------|
| $m_{sol}$                        | 3.788874742 | lb/hr |
| $q_{sol}$                        | 0.50615307  | gph   |
| Tank Volume                      | 1093.290632 | gal   |

### Cost Estimation Direct Costs

DC \$139,848.01

### **Indirect Costs**

| General Facilities                | \$6,992.40   |
|-----------------------------------|--------------|
| Engineering and home office fees  | \$13,984.80  |
| Process Contingency               | \$6,992.40   |
| Total Indirect Installation Costs | \$27,969.60  |
| Project Contingency               | \$25,172.64  |
| Total Plant Cost                  | \$192,990.25 |
| Preproduction Cost                | \$3,859.80   |
| Inventory Capital                 | \$826.58     |
| Total Capital Investment          | \$197,676.63 |
|                                   |              |

### **Direct Annual Costs**

| Maintenance Costs  | \$2,965.15 |            | per yr |
|--------------------|------------|------------|--------|
| Power              | 2.04898176 |            | KW     |
| Annual Electricity |            | \$2,017.48 | per yr |

| Reagent Solution Cost       | \$3,352.24   | per yr  |
|-----------------------------|--------------|---------|
| Catalyst Replacement        |              |         |
| FWF                         | 0.317208565  |         |
| Annual Catalyst Replacement | \$443.99     | per yr  |
| Total Variable Direct Cost  | \$5,813.71   | per yr  |
| Total Direct Annual Cost    | \$8,778.86   | per yr  |
| CRF                         | 0.080242587  |         |
| Indirect Annual Cost        | \$15,862.08  | per yr  |
| Total annual Cost           | \$24,640.94  | per yr  |
| NOx Removed                 | 0.14         | tons    |
| Cost of NOx removal         | \$181,576.47 | per ton |

### **ENGINE SCR COST EFFECTIVENESS CALCULATION**

EPA AIR POLLUTION CONTROL COST MANUAL, Sixth Edition, EPA/452/B-02-001, January 2002

Section 4.2 - NOx Post-Combustion, Chapter 2 - Selective Catalytic Reduction

| Cost Effectiveness = | \$ 152,555.04 | \$/ton |
|----------------------|---------------|--------|
|                      | 7/            | T /    |

| _         | • |      |      |
|-----------|---|------|------|
| $-\alpha$ |   | nm   | ent  |
| ьч        | u | 9111 | CIIL |

| Engine rating (1000 HP)               | 9.6             | mmBTU/hr    |
|---------------------------------------|-----------------|-------------|
| Engine Operating hours                | 100             | hours       |
| Engine capacity factor                | 1               |             |
| SCR Operating Days                    | 365             | days        |
| Total Capacity Factor                 | 1               |             |
|                                       |                 |             |
| Baseline NOx (30 ppm)                 | 0.589           | lb/mmBTU    |
| SCR NOx (5 ppm)                       | 0.02356         | lb/mmBTU    |
| Ammonia Slip                          | 10              | ppm         |
| Ammonia Stoichiometric Ratio          | 1.05            |             |
| Stored Ammonia Conc                   | 29              | %           |
| Ammonia Storage days                  | 90              | days        |
| Sulfur Content                        | 0.005           | %           |
| Pressure drop for SCR Ductwork        | 3               | inches W.G. |
| Pressure drop for each Catalyst Layer | 1               | inches W.G. |
| Temperature at SCR Inlet              | 650             | degrees F   |
| Equipment Life                        | 20              | years       |
| Annual interest Rate                  | 5               | %           |
| Catalyst cost, Initial                | 240             | \$/ft2      |
| Catalyst cost, replacement            | 290             | \$/ft2      |
| Electrical Power cost                 | 0.1124          | \$/KWh      |
| Ammonia Cost                          | 0.101           | \$/lb       |
| Catalyst Life                         | 24000           | hr          |
| Catalyst Layers                       | 2 full, 1 empty |             |
|                                       |                 |             |

### **Boiler Calculations**

| $Q_B$     | 9.6         | mmBTU/hr |
|-----------|-------------|----------|
| qflue gas | 3420.743017 | acfm     |

N<sub>NOx</sub> 0.96

### **SCR Reactor Calculations**

| Vol <sub>Catalyst</sub> | 28.9587163  | ft3 |    |
|-------------------------|-------------|-----|----|
| A <sub>Catalyst</sub>   | 3.563273976 | ft2 |    |
| A <sub>SCR</sub>        | 4.097765072 | ft2 |    |
| I=w=                    | 2.024293722 | ft  |    |
| n <sub>layer</sub>      | 3           |     |    |
| h <sub>layer</sub>      | 3.708998943 |     |    |
| n <sub>total</sub>      | 4           |     |    |
| h <sub>SCR</sub>        | 51.83599577 |     | ft |

### **Reagent Calculations**

| $m_{\text{reagent}}$ | 2.197547351 |       |
|----------------------|-------------|-------|
| m <sub>sol</sub>     | 7.577749485 | lb/hr |
| q <sub>sol</sub>     | 1.012306141 | gph   |
| Tank Volume          | 2186.581265 | gal   |

### Cost Estimation Direct Costs

### **Indirect Costs**

| General Facilities                | \$<br>11,047.11  |
|-----------------------------------|------------------|
| Engineering and home office fees  | \$<br>22,094.22  |
| Process Contingency               | \$<br>11,047.11  |
| Total Indirect Installation Costs | \$<br>44,188.44  |
| Project Contingency               | \$<br>39,769.60  |
| Total Plant Cost                  | \$<br>304,900.24 |
| Preproduction Cost                | \$<br>6,098.00   |
| Inventory Capital                 | \$<br>1,653.16   |
| Total Capital Investment          | \$<br>312,651.41 |

### **Direct Annual Costs**

| Maintenance Costs  | \$<br>4,689.77 | per yr |  |
|--------------------|----------------|--------|--|
| Power              | 4.09796352     |        |  |
| Annual Electricity | \$<br>4,034.95 | per yr |  |

| Reagent Solution Cost       | \$<br>6,704.49   | per yr  |
|-----------------------------|------------------|---------|
| Catalyst Replacement        |                  |         |
| FWF                         | 0.317208565      |         |
| Annual Catalyst Replacement | \$<br>887.98     | per yr  |
| Total Variable Direct Cost  | \$<br>11,627.42  | per yr  |
| Total Direct Annual Cost    | \$<br>16,317.19  | per yr  |
| CRF                         | 0.080242587      |         |
| Indirect Annual Cost        | \$<br>25,087.96  | per yr  |
| Total annual Cost           | \$<br>41,405.15  | per yr  |
| NOx Removed                 | 0.27             | tons    |
| Cost of NOx removal         | \$<br>152,555.04 | per ton |